Technical Library: soft limit over (Page 1 of 2)

Attaching Fiber Optic Modules

Technical Library | 2019-08-01 10:58:32.0

Optical fibers transmit information in the form of pulses of light. The advantages of optical fibers over traditional copper wires include: higher throughput, greater signal distance and speed, smaller cable mass and diameter, greater pull tension limit, and resistance to electromagnetic interference (EMI) and radio frequency interference(RFI). The disadvantages of fiber optics when compared to copper wires include: end-face defects, cleanliness, and the ease of attaching connectors to electronics assemblies (Figure 1).

ACI Technologies, Inc.

Soft Material-Enabled, Flexible Hybrid Electronics for Medicine, Healthcare, and Human-Machine Interfaces

Technical Library | 2020-04-08 22:57:04.0

Flexible hybrid electronics (FHE), designed in wearable and implantable configurations, have enormous applications in advanced healthcare, rapid disease diagnostics, and persistent human-machine interfaces. Soft, contoured geometries and time-dynamic deformation of the targeted tissues require high flexibility and stretchability of the integrated bioelectronics. Recent progress in developing and engineering soft materials has provided a unique opportunity to design various types of mechanically compliant and deformable systems. Here, we summarize the required properties of soft materials and their characteristics for configuring sensing and substrate components in wearable and implantable devices and systems. Details of functionality and sensitivity of the recently developed FHE are discussed with the application areas in medicine, healthcare, and machine interactions. This review concludes with a discussion on limitations of current materials, key requirements for next generation materials, and new application areas.

Washington State Magazine

Soft, Wireless Periocular Wearable Electronics For Real-Time Detection Of Eye Vergence In A Virtual Reality Toward Mobile Eye Therapies

Technical Library | 2020-07-22 19:24:33.0

Recent advancements in electronic packaging and image processing techniques have opened the possibility for optics-based portable eye tracking approaches, but technical and safety hurdles limit safe implementation toward wearable applications. Here, we introduce a fully wearable, wireless soft electronic system that offers a portable, highly sensitive tracking of eye movements (vergence) via the combination of skin-conformal sensors and a virtual reality system. Advancement of material processing and printing technologies based on aerosol jet printing enables reliable manufacturing of skin-like sensors, while the flexible hybrid circuit based on elastomer and chip integration allows comfortable integration with a user's head. Analytical and computational study of a data classification algorithm provides a highly accurate tool for real-time detection and classification of ocular motions. In vivo demonstration with 14 human subjects captures the potential of the wearable electronics as a portable therapy system, whose minimized form factor facilitates seamless interplay with traditional wearable hardware.

Georgia Institute of Technology

Implementing Lead Free Soldering - European Consortium Research

Technical Library | 2007-07-12 14:29:37.0

Over the last ten years, there have been a large number of publications describing work into lead free electronics soldering. They have come from all regions of the world and from academic organisations, individual companies and consortia. Although a number of these studies have culminated in "production trials", these have invariably been on a limited scale and they were essentially a demonstration, rather than the first step to implementation.

Multicore Solders

Assessment of Pre-Treatment Techniques for Coarse Printed Circuit Boards (PCBs) Recycling

Technical Library | 2022-01-05 23:10:11.0

Waste electrical and electronic equipment or e-waste generation has been skyrocketing over the last decades. This poses waste management and value recovery challenges, especially in developing countries. Printed circuit boards (PCBs) are mainly employed in value recovery operations. Despite the high energy costs of generating crushed and milled particles of the order of several microns, those are employed in conventional hydrometallurgical techniques. Coarse PCB pieces (of order a few centimetres) based value recovery operations are not reported at the industrial scale as the complexities of the internal structure of PCBs limit efficient metal and non-metal separation.

Monash University

Effect of Gold Content on the Microstructural Evolution of SAC305 Solder Joints Under Isothermal Aging

Technical Library | 2013-08-29 19:52:43.0

Au over Ni on Cu is a widely used printed circuit board (PCB) surface finish, under bump metallization (UBM), and component lead metallization. It is generally accepted that less than 3 wt.% Au in Sn-Pb solder joints inhibits formation of detrimental intermetallic compounds (IMC). However, the critical limit for Au content in Pb-free solder joints is not well established. Three surface-mount package platforms, one with a matte Sn surface finish and the others with Ni/Au finish, were soldered to Ni/Au-finished PCB using Sn-3.0Ag 0.5Cu (SAC305) solder, in a realistic manufacturing setting. The assembled boards were divided into three groups: one without any thermal treatment, one subjected to isothermal aging at 125°C for 30 days, and the third group aged at 125°C for 56 days...

Agilent Technologies, Inc.

FICS-PCB: A Multi-Modal Image Dataset for Automated Printed Circuit Board Visual Inspection

Technical Library | 2024-04-29 21:19:42.0

Over the years, computer vision and machine learning disciplines have considerably advanced the field of automated visual inspection for Printed Circuit Board (PCB-AVI) assurance. However, in practice, the capabilities and limitations of these advancements remain unknown because there are few publicly accessible datasets for PCB visual inspection and even fewer that contain images that simulate realistic application scenarios. To address this need, we propose a publicly available dataset, "FICS-PCB"1, to facilitate the development of robust methods for PCB-AVI. The proposed dataset includes challenging cases from three variable aspects: illumination, image scale, and image sensor. This dataset consists of 9,912 images of 31 PCB samples and contains 77,347 annotated components. This paper reviews the existing datasets and methodologies used for PCBAVI, discusses challenges, describes the proposed dataset, and presents baseline performances using feature engineering and deep learning methods for PCB component classification.

University of Florida

What causes temperature humidity chamber to alarm?

Technical Library | 2019-12-12 02:43:44.0

Today we discuss the reason that causes temperature humidity chamber to alarm,In most cases, the equipment alarm is caused by the improper operation in the process of use, which mainly includes following reasons:that are refrigeration system, temperature system and circulating system. First, Refrigeration system 1, refrigeration compressor overpressure alarm. If the refrigerant pressure exceeds the set value, it will stop and alarm at the same time. At this time, the fault must be eliminated and then manually reset. 2, short phase power supply, phase sequence alarm. When the external power supply of the equipment is out of phase or the phase sequence is changed, it will stop and alarm at the same time. 3. The circulating cooling water is short of water to alarm. When the water pressure of the cooling circulating water system is insufficient, it will stop and alarm at the same time, and it must wait for the fault to be eliminated and reset at the same time before it could run normally. 4, refrigeration compressor overheating alarm. When the coil of the compressor is overheated and the power supply of the line is not normal, it will stop and alarm at the same time. Second, Temperature system 1, the overtemperature alarm in the chamber. The sensors in the channel and the sample area are equipped with overtemperature protection devices, and there are also overtemperature protecter on the control panel. When the temperature in the working chamber exceeds the setting value on the controller, it will stop and alarm. 2. sample overtemperature protection. When the temperature in the sample area exceeds the protection temperature set by the controller, it will stop and alarm at the same time. The overtemperature protection of the sample is divided into upper limit protection and lower limit protection, which can be set according to the demand, Third,Circulating system 1. The alarm is caused by the overheating of the circulating fan. When the coil of the fan is over-heated, the alarm will be stopped at the same time. 2. The fan over-current alarm. When the current of the fan exceeds the allowable value, the alarm is stopped at the same time, and the normal operation can only be carried out after the fault maintenance of the overcurrent is completed. This is what we talk about today,if you have more questions,let us know.

Symor Instrument Equipment Co.,Ltd

Placement Optimisation in a Lean Manufacturing Environment

Technical Library | 2008-02-20 21:42:52.0

Tier 2 and Tier 3 EMS companies face increasing pressure from competition in low-cost manufacturing countries to produce assembled boards at lower cost, with increased complexity and to tighter deadlines. They also face an increasing amount of high-mix, small-to-mediumvolume production runs. Even OEMs find it hard to predict what products they will be manufacturing in three to five years time, driving the need to invest in highly flexible production tools that will cater to their needs over the lifetime of the equipment. This paper examines methodologies for optimising the process, improving stock control and providing greater traceability using lean manufacturing techniques.

EUROPLACER

Implementing Robust Bead Probe Test Processes into Standard Pb-Free Assembly

Technical Library | 2015-08-20 15:18:38.0

Increasing system integration and component densities continue to significantly reduce the opportunity to access nets using standard test points. Over time the size of test points has been drastically reduced (as small as 0.5 mm in diameter) but current product design parameters have created space and access limitations that remove even the option for these test points. Many high speed signal lines have now been restricted to inner layers only. Where surface traces are still available for access, bead probe technology is an option that reduces test point space requirements as well as their effects on high speed nets and distributes mechanical loading away from BGA footprints enabling test access and reducing the risk of mechanical defects associated with the concentration of ICT spring forces under BGA devices. Building on Celestica's previous work characterizing contact resistance associated with Pr-free compatible surface finishes and process chemistry; this paper will describe experimentation to define a robust process window for the implementation of bead probe and similar bump technology that is compatible with standard Pb-free assembly processes. Test Vehicle assembly process, test methods and "Design of Experiments" will be described. Bead Probe formation and deformation under use will also be presented along with selected results.

Celestica Corporation

  1 2 Next

soft limit over searches for Companies, Equipment, Machines, Suppliers & Information

Global manufacturing solutions provider

High Precision Fluid Dispensers
Blackfox IPC Training & Certification

Wave Soldering 101 Training Course
SMT feeders

Best Reflow Oven
High Throughput Reflow Oven

Nozzles, Feeders, Spare Parts - Siemens, Fuji, Juki, Yamaha, etc...
PCB Depanelizers

Low-cost, self-paced, online training on electronics manufacturing fundamentals