Technical Library | 1999-05-09 13:05:12.0
This Technical Note discusses the construction of solder tips, the various failure modes associated with tip plating (cracking, wear, corrosion, and dewetting), how to diagnose those failure modes, and specific practices that can be taken to minimize or eliminate each one.
Technical Library | 2019-01-09 19:19:52.0
The electronics industry has widely adopted Sn-3.0Ag-0.5Cu solder alloys for lead-free reflow soldering applications and tin-copper based alloys for wave soldering applications. In automated soldering or rework operations, users may work with Sn-Ag-Cu or Sn-Cu based alloys. One of the challenges with these types of lead-free alloys for automated / hand soldering operations, is that the life of the soldering iron tips will shorten drastically using lead-free solders with an increased cost of soldering iron tool maintenance/ tip replacement. Development was done on a new lead-free low silver solder rework alloy (Sn-0.3Ag-0.7Cu-0.04Co) in comparison with a number of alternative lead-free alloys including Sn-0.3Ag-0.7Cu, Sn-0.7Cu and Sn-3.0Ag-0.5Cu and tin-lead Sn40Pb solder in soldering evaluations.
Technical Library | 2012-11-27 14:06:48.0
Quality managers and line supervisors are routinely tasked with the responsibility of ensuring that the hand soldering process is under control. The method most commonly used is to measure the idle tip temperature of the soldering station and to use this reading as a benchmark of system compliance. This method, although popular is now being seriously questioned by many industry professionals as being irrelevant in qualifying true system process control. This document aims to present a practical view of what factors are important for successful hand soldering and to suggest an alternative procedure for qualification that is simple, repeatable and directly related to the effectiveness of the soldering station.
Technical Library | 1999-05-09 13:14:02.0
Studies and tests of comparative soldering iron thermal performance at low temperatures - Metcal direct power soldering technology compared to conventional stored energy soldering irons from leading manufacturers.
Technical Library | 2022-04-29 00:49:12.0
Tools: soldering iron, soldering iron stand, wet sponge, tweezers, rosin, solder, absorbent cotton, 95% alcohol, chip resistors, capacitors, circuit boards, 220V power supply..... http://www.leadersmt.com/gen2/1028113523/?mod=file&col_key=download
Technical Library | 2013-01-05 22:21:01.0
More and more countries legislate to forbib lead usage in solder material. However, the lead-free solder wire has higher melting point and soldering temperature, increase soldering iron temperature may damage the PCB or components. How to solve this problem?
Technical Library | 2019-01-02 21:51:49.0
Failed solder joints remain a constant source of printed circuit board failure. Soldering is the bonding of metallic surfaces via an intermetallic compound (IMC). The interaction between thermal energy delivery, flux chemistry, and solder chemistry creates the solder bond or joint. Today, reliability relies on visual inspection; operator experience and skill, control of influencers e.g. tip geometry, tip temperature, and collection and analysis of process data. Each factor involved with the formation of the solder joint is an element of risk and can affect either throughput or repeatability. Mitigating this risk in hand soldering requires the identification of these factors and a means to address them.
Technical Library | 2006-09-06 15:25:43.0
Transition to lead free solder stations in electronics packaging has raised issues regarding process, metallurgy and reliability m assemblies. In regards to soldering, lead has been used for thousands of years in a wide range of applications. Conventional eutectic or near eutectic tin-lead solder compositions have been used for virtually all soldering applications in electronics assembly for the last 50 years, In the electronics assembly process, a majority of commercial rework applications and some low density board assembly processes require hand soldering stations (...) This paper describes an attempt to quantify both qualitative and quantitative data that can aid in the evaluation of lead free soldering irons.
Technical Library | 2019-05-29 01:47:22.0
1.Vias near SMD pads: Solder can flow into the via after melted. As a result cold joint will appear in the end. Check the picture below. 2.Vias on SMD pads: Solder can flow into the via more easier after melted. Check the picture below. 3.Via opening without soldermask covered. When workers solder TH parts by hand, soldering iron can touch vias sometime, then tiny amounts molten solder will stay on vias. This can lead to electrical short easily. We recommend you make all vias tenting (covered by solder mask) if it is possible.
PCBNPI-Professional PCB Fab/PCB Assembly Service Provider From China
Technical Library | 2022-06-20 21:01:37.0
We've been doing a lot of print testing in our lab. In our first set of published results, "The Impact of Reduced Solder Alloy Powder Size on Solder Paste Print Performance1" from IPC/APEX 2016, we revealed a hierarchy of input variables to maximize solder paste transfer efficiency and minimize variation. In that study, we used a fully-optioned stencil as part of the equipment set. In order to tease out the data we were looking for, we could not lose critical information to the noise of stencil-induced variations.