Technical Library: solder joint partially reflowed (Page 2 of 6)

Effects of Reflow Profile and Thermal Conditioning on Intermetallic Compound Thickness for SnAgCu Soldered Joints

Technical Library | 2010-04-29 21:40:37.0

The purpose of this paper is to investigate the effects of reflow time, reflow peak temperature, thermal shock and thermal aging on the intermetallic compound (IMC) thickness for Sn3.0Ag0.5Cu (SAC305) soldered joints.

Flex (Flextronics International)

Voiding Performance with Solder Pastes Containing Modified SAC Alloys for Automotive Applications in Bottom Terminated Component Assemblies

Technical Library | 2019-07-24 23:55:32.0

Voiding is a key concern for components with thermal planes because interruptions in Z-axis continuity of the solder joint will hinder thermal transfer. When assembling components with solder paste, there is a high propensity for voiding due to the confined nature of the solder paste deposits under the component. Once reflowed, many factors contribute to the amount of voiding in a solder joint such as the reflow profile, designs of the component, board and stencil, and material factors. This study will focus on the solder paste alloy and flux combination as well as profile and board surface finishes.

Indium Corporation

A Low Temperature Solder Joint Encapsulant for Sn/Bi Applications

Technical Library | 2016-01-12 11:05:28.0

The electronic industry is currently very interested in low temperature soldering processes such as using Sn/Bi alloy to improve process yield, eliminate the head-in-pillow effect, and enhance rework yield. However, Sn/Bi alloy is not strong enough to replace lead-free (SAC) and eutectic Sn/Pb alloys in most applications. In order to improve the strength of Sn/Bi solder joints, enhance mechanical performance, and improve reliability properties such as thermal cycling performance of soldered electronic devices, YINCAE has developed a low temperature solder joint encapsulant for Sn/Bi soldering applications. This low temperature solder joint encapsulant can be dipped, dispensed, or printed. After reflow with Sn/Bi solder paste or alloy, solder joint encapsulant encapsulates the solder joint. As a result, the strength of solder joints is enhanced by several times, and thermal cycling performance is significantly improved. All details will be discussed in this paper.

YINCAE Advanced Materials, LLC.

OOOH Colors, It Must Be Lead Free

Technical Library | 2014-06-23 14:50:52.0

It was unusual to see chip terminations change colors when tin lead solders were used but with the introduction of lead free reflow soldering and the corresponding increases in reflow temperatures terminations are now changing colors. Two conditions are present when reflow temperatures are increased for lead free solder alloys that leads to discoloration. Reflow temperatures are above the melting point of tin (Sn MP is 232oC). Air temperatures commonly used in forced convection reflow systems are high enough to both melt the tin plating on the termination allowing it to be pulled into the solder joint due to solder joint liquid solder surface tension leaving behind the exposed nickel barrier. Now those metal oxide colors will be visible due to high air temperatures during reflow.

Johanson Dielectrics, Inc.

THE EFFECT OF VACUUM REFLOW PROCESSING ON SOLDER JOINT VOIDING AND THERMAL FATIGUE RELIABILITY

Technical Library | 2023-01-17 17:16:43.0

A test program was developed to evaluate the effectiveness of vacuum reflow processing on solder joint voiding and subsequent thermal cycling performance. Area array package test vehicles were assembled using conventional reflow processing and a solder paste that generated substantial void content in the solder joints. Half of the population of test vehicles then were re-processed (reflowed) using vacuum reflow. Transmission x-ray inspection showed a significant reduction in solder voiding after vacuum processing. The solder attachment reliability of the conventional and vacuum reflowed test vehicles was characterized and compared using two different accelerated thermal cycling profiles. The thermal cycling results are discussed in terms of the general impact of voiding on solder thermal fatigue reliability, results from the open literature, and the evolving industry standards for solder voiding. Recommendations are made for further work based on other void reduction methods and additional reliability studies.

Acroname

Study on the Reliability of Sn–Bi Composite Solder Pastes with Thermosetting Epoxy under Thermal Cycling and Humidity Treatment

Technical Library | 2021-08-25 16:28:36.0

In this study, a Sn–Bi composite solder paste with thermosetting epoxy (TSEP Sn–Bi) was prepared by mixing Sn–Bi solder powder, flux, and epoxy system. The melting characteristics of the Sn–Bi solder alloy and the curing reaction of the epoxy system were measured by differential scanning calorimeter (DSC). A reflow profile was optimized based on the Sn–Bi reflow profile, and the Organic Solderability Preservative (OSP) Cu pad mounted 0603 chip resistor was chosen to reflow soldering and to prepare samples of the corresponding joint. The high temperature and humidity reliability of the solder joints at 85 #14;C/85% RH (Relative Humidity) for 1000 h and the thermal cycle reliability of the solder joints from

Nanjing University

Effect of Reflow Profile on Intermetallic Compound Formation

Technical Library | 2013-10-24 15:47:53.0

Reflow soldering in a nitrogen atmosphere is a common process consideration in surface mount technology assembly. This is because the use of nitrogen in reflow equipment may benefit the process as well as the quality of the end product, where it can increase the reliability of the solder joint. (...) The present study investigated thoroughly the effect of different reflow soldering atmosphere, which is air and nitrogen on IMC formation and growth

Universiti Teknologi Malaysia

HALT Testing of Backward Soldered BGAs on a Military Product

Technical Library | 2015-11-19 18:15:07.0

The move to lead free (Pb-free) electronics by the commercial industry has resulted in an increasing number of ball grid array components (BGAs) which are only available with Pb-free solder balls. The reliability of these devices is not well established when assembled using a standard tin-lead (SnPb) solder paste and reflow profile, known as a backward compatible process. Previous studies in processing mixed alloy solder joints have demonstrated the importance of using a reflow temperature high enough to achieve complete mixing of the SnPb solder paste with the Pb-free solder ball. Research has indicated that complete mixing can occur below the melting point of the Pb-free alloy and is dependent on a number of factors including solder ball composition, solder ball to solder paste ratio, and peak reflow times and temperatures. Increasing the lead content in the system enables full mixing of the solder joint with a reduced peak reflow temperature, however, previous research is conflicting regarding the effect that lead percentage has on solder joint reliability in this mixed alloy solder joint.

Lockheed Martin Corporation

Comparison Of Active And Passive Temperature Cycling

Technical Library | 2020-12-10 15:49:40.0

Electronic assemblies should have longer and longer service life. Today there are partially demanded 20 years of functional capability for electronics for automotive application. On the other hand, smaller components, such as resistors of size 0201, are able to endure an increasing number of thermal cycles until fail of solder joints, so these are tested sometimes up to 4000 cycles. But testing until the end of life is essential for the determination of failure rates and the prognosis of reliability. Such tests require a lot of time, but this is often not available in developing of new modules. A further acceleration by higher cycle temperatures is usually not possible, because the materials are already operated at the upper limit of the load. However, the duration can be shortened by the use of liquids for passive tests, which allow faster temperature changes and shorter dwell times because of better heat transfer compared to air. The question is whether such tests lead to comparable results and what failure mechanisms are becoming effective. The same goes for active temperature cycles, in which the components itself are heated from inside and the substrate remains comparatively cold. This paper describes the various accelerated temperature cycling tests, compares and evaluates the related degradation of solder joints.

University of Rostock

Low Cycle Fatigue Behaviour of Multi-joint Sample in Mechanical Testing

Technical Library | 2013-03-21 21:24:49.0

This paper explores the behaviour of a copper test vehicle with multiple reflowed solder joints, which has direct relevance to ball grid arrays (BGA) and high density interconnect structures. The paper explores the relative stress conditions on the distributed joints and the sensitivity to ball joint shape... First published in the 2012 IPC APEX EXPO technical conference proceedings

National Physical Laboratory


solder joint partially reflowed searches for Companies, Equipment, Machines, Suppliers & Information

Best SMT Reflow Oven

World's Best Reflow Oven Customizable for Unique Applications
SMT spare parts - Qinyi Electronics

High Throughput Reflow Oven
Selective soldering solutions with Jade soldering machine

High Precision Fluid Dispensers
Equipment Auction Automotive Electronics Supplier - Closure of Tier-One SMT Dvision: (10) ASM & Universal SMT Lines & Feeders Equipment as-new-as 2019! Dek | Koh Young | Speedline | Vitronics | Viscom

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.
PCB Depanelizers

Low-cost, self-paced, online training on electronics manufacturing fundamentals