Technical Library: solder mask interfacial energy (Page 1 of 1)

Analysis of Interfacial Cracking in Flip Chip Packages With Viscoplastic Solder Deformation

Technical Library | 2023-11-27 18:29:45.0

This paper examines the modeling of viscoplastic solder behavior in the vicinity of interfacial cracking for flip chip semiconductor packages. Of particular interest is the relationship between viscoplastic deformation in the solder bumps and any possible interface cracking between the epoxy underfill layer and the silicon die. A 3-D finite element code, developed specifically for the study of interfacial fracture problems, was modified to study how viscoplastic solder material properties would affect fracture parameters such as strain energy release rate and phase angle for nearby interfacial cracks. Simplified two-layer periodic symmetry models were developed to investigate these interactions. Comparison of flip chip results using different solder material models showed that viscoplastic models yielded lower stress and fracture parameters than time independent elastic-plastic simulations. It was also found that adding second level attachment greatly increases the magnitude of the solder strain and fracture parameters. As expected, the viscoplastic and temperature dependent elastic-plastic results exhibited greater similarity to each other than results based solely on linear elastic properties. !DOI: 10.1115/1.1649242"

A.T.E. Solutions, Inc.

Fabrication Of Solderable Intense Pulsed Light Sintered Hybrid Copper For Flexible Conductive Electrodes

Technical Library | 2021-11-03 17:05:39.0

Additively printed circuits provide advantages in reduced waste, rapid prototyping, and versatile flexible substrate choices relative to conventional circuit printing. Copper (Cu) based inks along with intense pulsed light (IPL) sintering can be used in additive circuit printing. However, IPL sintered Cu typically suffer from poor solderability due to high roughness and porosity. To address this, hybrid Cu ink which consists of Cu precursor/nanoparticle was formulated to seed Cu species and fill voids in the sintered structure. Nickel (Ni) electroplating was utilized to further improve surface solderability. Simulations were performed at various electroplating conditions and Cu cathode surface roughness using the multi-physics finite element method. By utilizing a mask during IPL sintering, conductivity was induced in exposed regions; this was utilized to achieve selective Ni-electroplating. Surface morphology and cross section analysis of the electrodes were observed through scanning electron microscopy and a 3D optical profilometer. Energy dispersive X-ray spectroscopy analysis was conducted to investigate changes in surface compositions. ASTM D3359 adhesion testing was performed to examine the adhesion between the electrode and substrate. Solder-electrode shear tests were investigated with a tensile tester to observe the shear strength between solder and electrodes. By utilizing Cu precursors and novel multifaceted approach of IPL sintering, a robust and solderable Ni electroplated conductive Cu printed electrode was achieved.

Hanyang University

  1  

solder mask interfacial energy searches for Companies, Equipment, Machines, Suppliers & Information

Software for SMT

High Throughput Reflow Oven
Solder Paste Dispensing

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.
SMT feeders

Easily dispense fine pitch components with ±25µm positioning accuracy.