Technical Library | 2023-01-17 17:22:28.0
The impact of voiding on the solder joint integrity of ball grid arrays (BGAs)/chip scale packages (CSPs) can be a topic of lengthy and energetic discussion. Detailed industry investigations have shown that voids have little effect on solder joint integrity unless they fall into specific location/geometry configurations. These investigations have focused on thermal cycle testing at 0°C-100°C, which is typically used to evaluate commercial electronic products. This paper documents an investigation to determine the impact of voids in BGA and CSP components using thermal cycle testing (-55°C to +125°C) in accordance with the IPC- 9701 specification for tin/lead solder alloys. This temperature range is more typical of military and other high performance product use environments. A proposed BGA void requirement revision for the IPC-JSTD-001 specification will be extracted from the results analysis.
Technical Library | 2019-07-10 23:36:14.0
Pockets of gas, or voids, trapped in the solder interface between discrete power management devices and circuit assemblies are, unfortunately, excellent insulators, or barriers to thermal conductivity. This resistance to heat flow reduces the electrical efficiency of these devices, reducing battery life and expected functional life time of electronic assemblies. There is also a corresponding increase in current density (as the area for current conduction is reduced) that generates additional heat, further leading to performance degradation.
Technical Library | 2023-01-17 17:12:33.0
Reflowed indium metal has for decades been the standard for solder thermal interface materials (solder TIMs or sTIMs) in most high-performance computing (HPC) TIM1 applications. The IEEE Heterogeneous Integration Thermal roadmap states that new thermal interface materials solutions must provide a path to the successful application of increased total-package die areas up to 100cm2. While GPU architectures are relatively isothermal during usage, CPU hotspots in complex heterogeneously-integrated modules will need to be able to handle heat flux hotspots up to 1000W/cm2 within the next two years. Indium and its alloys are used as reflowed solder thermal interface materials in both CPU and GPU "die to lid/heat spreader" (TIM1) applications. Their high bulk thermal conductivity and proven long-term reliability suit them well for extreme thermomechanical stresses. Voiding is the most important failure mode and has been studied by x-ray. The effects of surface pretreatment, pressure during reflow, solder flux type/fluxless processing, and preform design parameters, such as alloy type, are also examined. The paper includes data on both vacuum and pressure (autoclave) reflow of sTIMs, which is becoming necessary to meet upcoming requirements for ultralow voiding in some instances.
Technical Library | 2023-12-15 03:06:24.0
The first process in the SMT industry is solder paste printing. After the solder paste printing is completed, electronic components are attached to PCB pads through a SMT machine, and then reflow soldered. A preliminary PCB board is roughly processed. SMT is a combination of multiple devices, and such a line is called an SMT production line. Our common PCBA is processed through this process. In SMT technology, each process is very important, and poor quality can be caused by different process defects. Today, we are discussing the causes and countermeasures of SMT printing collapse.
Technical Library | 2023-09-16 06:04:19.0
Off-line selective wave soldering machines are the best way to solder complex PCBs. They allow you to solder only the components that need to be soldered, saving time and material.
Technical Library | 2023-09-16 06:27:24.0
Vacuum reflow ovens are the best way to solder SMD components. They create a controlled environment that prevents oxidation and improves solder joint quality.
Technical Library | 2023-09-13 11:56:22.0
Discover the ultimate soldering solution with our Automatic Visual Soldering Robot. Achieve flawless, precise soldering for your electronic components. Boost productivity and reduce errors with cutting-edge technology.
Technical Library | 2023-09-16 03:40:41.0
Wave soldering machines are the most efficient way to solder PCBs. They are used to solder components to a PCB by passing the PCB through a wave of molten solder. This process is fast, accurate, and repeatable, making it ideal for mass production. In this article, we will discuss the basics of wave soldering machines, including their components, operation, and benefits. We will also provide a buying guide to help you choose the right wave soldering machine for your needs.
Technical Library | 2023-09-16 06:29:26.0
Explore our range of reflow ovens designed to streamline your PCB assembly process. Achieve consistent and high-quality soldering for your electronic components.
Technical Library | 2008-10-15 20:16:12.0
Solder paste dispensing is usually considered a slow process. Due to the speed advantages, screen printing is used to apply solder paste whenever possible. However, screen printing is not always an option. Leveraging the high speed of piezo drive technology opens the door to a broad range of solder paste dispensing applications. The ability to dispense dots under 300-μm diameter, even as small as 125 μm, enables BGA rework, small geometry deposits for miniaturized passive components, electrical connections in recessed cavities, and RF shield attach for handheld devices.