Technical Library: solder paste density (Page 7 of 21)

Stencil Design Guidelines for Electronics Assembly Technologies.

Technical Library | 2014-03-13 15:25:01.0

A student competition paper at Budapest University of Technology And Economics, Department of Electronics Technology gives background, covers stencil design and discusses stencils intended for pin in paste application. The stencil applied for depositing the solder paste is a thin, 75–200 µm thick metal foil, on which apertures are formed according to the solder pads on the printed circuit board. Stencil printing provides a fast, mass solder paste deposition process; relatively expensive, appropriate and recommended for mass production.

Budapest University of Technology and Economics

Reliability Enhancement of Wafer Level Packages with Nano-Column-Like Hollow Solder Ball Structures

Technical Library | 2012-01-12 22:51:19.0

In this paper, hollowed solder ball structures in wafer level packages are investigated. Detailed 3-D finite element modelling is conducted for stress and accumulated inelastic strain energy density or creep strain analysis. Three cases are studied in thi

Lamar University - Department of Mechanical Engineering

Dispelling the Black Magic of Solder Paste

Technical Library | 2016-01-21 16:52:27.0

Solder paste has long been viewed as "black magic". This "black magic" can easily be dispelled through a solder paste evaluation. Unfortunately, solder paste evaluation can be a challenge for electronic assemblers. Interrupting the production schedule to perform an evaluation is usually the first hurdle. Choosing the solder paste properties to test is simple, but testing for these properties can be difficult. Special equipment or materials may be required depending upon the tests that are chosen. Once the testing is complete, how does one make the decision to choose a solder paste? Is the decision based on gut feel or hard data?This paper presents a process for evaluating solder pastes using a variety of methods. These methods are quick to run and are challenging, revealing the strengths and weaknesses of solder pastes. Methods detailed in this paper include: print volume, stencil life, response to pause, open time, tack force over time, wetting, solder balling, graping, voiding, accelerated aging, and others.

FCT ASSEMBLY, INC.

An Experimental and Computational Study of the Current Carrying Capacity of High Performance PWB Interconnections

Technical Library | 2009-01-01 16:37:38.0

Recent technology advancement has enabled enhancement in PWB electrical performance and wiring density. These innovations have taken the form of improved materials, novel PWB interconnect structures, and manufacturing technology. One such advancement is Z-axis conductive interconnect. The Z-interconnect technology involves building mini-substrates of 2 or 3 layers each, then assembling several mini-substrates together using conductive paste.

i3 Electronics

An Investigation into the Use of Nano-Coated Stencils to Improve Solder Paste Printing with Small Stencil Aperture Area Ratios

Technical Library | 2017-09-28 16:36:33.0

These nano-coatings also refine the solder paste brick shape giving improved print definition. These two benefits combine to help the solder paste printing process produce an adequate amount of solder paste in the correct position on the circuit board pads. Today, stencil aperture area ratios from 0.66 down to 0.40 are commonly used and make paste printing a challenge. This paper presents data on small area ratio printing for component designs including 01005 Imperial (0402 metric) and smaller 03015 metric and 0201 metric chip components and 0.3 mm and 0.4 mm pitch micro BGAs.

FCT ASSEMBLY, INC.

Evaluating Soldering Irons for Lead Free Assembly -A Quantitative Approach

Technical Library | 2006-09-06 15:25:43.0

Transition to lead free solder stations in electronics packaging has raised issues regarding process, metallurgy and reliability m assemblies. In regards to soldering, lead has been used for thousands of years in a wide range of applications. Conventional eutectic or near eutectic tin-lead solder compositions have been used for virtually all soldering applications in electronics assembly for the last 50 years, In the electronics assembly process, a majority of commercial rework applications and some low density board assembly processes require hand soldering stations (...) This paper describes an attempt to quantify both qualitative and quantitative data that can aid in the evaluation of lead free soldering irons.

T.J. Watson School of Engineering and Applied Science

Analysis of the Mechanical Behavior, Microstructure, and Reliability of Mixed Formulation Solder Joints

Technical Library | 2023-09-26 19:14:44.0

The transition from tin-lead to lead free soldering in the electronics manufacturing industry has been in progress for the past 10 years. In the interim period before lead free assemblies are uniformly accepted, mixed formulation solder joints are becoming commonplace in electronic assemblies. For example, area array components (BGA/CSP) are frequently available only with lead free Sn-Ag-Cu (SAC) solder balls. Such parts are often assembled to printed circuit boards using traditional 63Sn-37Pb solder paste. The resulting solder joints contain unusual quaternary alloys of Sn, Ag, Cu, and Pb. In addition, the alloy composition can vary across the solder joint based on the paste to ball solder volumes and the reflow profile utilized. The mechanical and physical properties of such Sn-Ag-Cu-Pb alloys have not been explored extensively in the literature. In addition, the reliability of mixed formulation solder joints is poorly understood.

Auburn University

Operation of a Vacuum Reflow Oven with Void Reduction Data

Technical Library | 2021-04-21 19:28:30.0

Voids affect the thermal characteristics and mechanical properties of a solder joint, thereby affecting the reliability of the solder interconnect. The automotive sector in particular is requiring the mitigation of solder voids in various electronic control modules to the minimum possible level. Earlier research efforts performed to decrease voids involved varying the reflow profile, paste deposit, paste alloy composition, stencil aperture, and thickness.

BTU International

Using Lean Six Sigma to Optimize Critical Inputs on Solder Paste Printing

Technical Library | 2018-03-21 22:44:30.0

Solder paste printing is the first step in the surface mount manufacturing process for PCBA assembly. When the solder paste printing process is uncontrolled, defects can be produced, which may not become apparent until the PCBA is downstream. (...)This paper will discuss how Lean Six Sigma techniques were used to optimize the solder paste printing process. It will highlight how a cross-functional team used the structured Define, Measure, Analyze, Improve and Control (DMAIC) methodology to identify and control the critical inputs. The advantage of the Lean Six Sigma methodology is that it guides the team through the rigorous structured process so that all possible inputs are considered and the critical ones can be identified.

Kimball Electronics, Inc.

Can Nano-Coatings Really Improve Stencil Performance?

Technical Library | 2017-10-26 01:18:49.0

Nano-coatings have been introduced by various manufacturers, with the promise of addressing some of the challenges relative to solder paste printing. Stated benefits include: Reduced underside cleaning, reduced bridging, improved solder paste release and improvements in yield. With several nano technologies already on the market and more likely to be introduced, how can the performance be quantified? How robust are these coatings? How can an assembler approach the ROI of these coatings? What hidden benefits or negative impacts should be considered? This paper will present a rigorous method for evaluating the performance and economic benefits of solder paste stencil nano-coatings.

FCT ASSEMBLY, INC.


solder paste density searches for Companies, Equipment, Machines, Suppliers & Information

2024 Eptac IPC Certification Training Schedule

Easily dispense fine pitch components with ±25µm positioning accuracy.
Selective Soldering Nozzles

Component Placement 101 Training Course
thru hole soldering and selective soldering needs

Software for SMT placement & AOI - Free Download.
Sell Your Used SMT & Test Equipment

Training online, at your facility, or at one of our worldwide training centers"
Void Free Reflow Soldering

High Resolution Fast Speed Industrial Cameras.
Fully Automatic BGA Rework Station

SMT & PCB Equipment - MPM, DEK, Heller, Europlacer and more...