Technical Library: solder paste print defects (Page 5 of 11)

Fundamentals of Solder Paste Technology

Technical Library | 2008-03-03 19:43:53.0

Solder pastes are key materials in surface mount technology (SMT) for assembly of printed circuit boards (PCBs). Introduction of lead-free has placed new demands on materials and processes in SMT, requiring materials and process engineers to adopt to lead free whilst ensuring process yields stay at the highest possible levels. Key is the solder paste, a material of great complexity involving engineering sciences, metallurgy, chemistry and physics. This article helps those working with solder pastes improve their understanding of this key material.

BizEsp Ltd.

Optimization of Stencil Apertures to Compensate for Scooping During Printing

Technical Library | 2018-03-07 22:41:05.0

This study investigates the scooping effect during solder paste printing as a function of aperture width, aperture length and squeegee pressure. The percent of the theoretical volume deposited depends on the PWB topography. A typical bimodal percent volume distribution is attributed to poor release apertures and large apertures, where scooping takes place, yielding percent volumes 100%. This printing experiment is done with a concomitant validation of the printing process using standard 3D Solder Paste Inspection (SPI) equipment.

Qual-Pro Corporation

Quantitative Evaluation of New SMT Stencil Materials

Technical Library | 2011-06-29 14:44:52.0

High yields in the stencil printing process are essential to a profitable SMT assembly operation. But as circuit complexity continues to increase, so do the challenges of maintaining a successful solder paste deposition process. To help assemblers address

Shea Engineering Services

Size Matters - The Effects of Solder Powder Size on Solder Paste Performance

Technical Library | 2020-10-27 02:02:17.0

Solder powder size is a popular topic in the electronics industry due to the continuing trend of miniaturization of electronics. The question commonly asked is "when should we switch from Type 3 to a smaller solder powder?" Solder powder size is usually chosen based on the printing requirements for the solder paste. It is common practice to use IPC Type 4 or 5 solder powders for stencil designs that include area ratios below the recommended IPC limit of 0.66. The effects of solder powder size on printability of solder paste have been well documented. The size of the solder powder affects the performance of the solder paste in other ways. Shelf life, stencil life, reflow performance, voiding behavior, and reactivity / stability are all affected by solder powder size. Testing was conducted to measure each of these solder paste performance attributes for IPC Type 3, Type 4, Type 5 and Type 6 SAC305 solder powders in both water soluble and no clean solder pastes. The performance data for each size of solder powder in each solder paste flux was quantified and summarized. Guidance for choosing the optimal size of solder powder is given based on the results of this study.

FCT ASSEMBLY, INC.

Investigation and Development of Tin-Lead and Lead-Free Solder Pastes to Reduce the Head-In-Pillow Component Soldering Defect.

Technical Library | 2014-03-06 19:04:07.0

Over the last few years, there has been an increase in the rate of Head-in-Pillow component soldering defects which interrupts the merger of the BGA/CSP component solder spheres with the molten solder paste during reflow. The issue has occurred across a broad segment of industries including consumer, telecom and military. There are many reasons for this issue such as warpage issues of the component or board, ball co-planarity issues for BGA/CSP components and non-wetting of the component based on contamination or excessive oxidation of the component coating. The issue has been found to occur not only on lead-free soldered assemblies where the increased soldering temperatures may give rise to increase component/board warpage but also on tin-lead soldered assemblies.

Christopher Associates Inc.

Recurrent Neural Network-Based Stencil Cleaning Cycle Predictive Modeling

Technical Library | 2023-06-12 18:33:29.0

This paper presents a real-time predictive approach to improve solder paste stencil printing cycle decision making process in surface mount assembly lines. Stencil cleaning is a critical process that influences the quality and efficiency of printing circuit board. Stencil cleaning operation depends on various process variables, such as printing speed, printing pressure, and aperture shape. The objective of this research is to help efficiently decide stencil printing cleaning cycle by applying data-driven predictive methods. To predict the printed circuit board quality level, a recurrent neural network (RNN) is applied to obtain the printing performance for the different cleaning aging. In the prediction model, not only the previous printing performance statuses are included, but also the printing settings are used to enhance the RNN learning. The model is tested using data collected from an actual solder paste stencil printing line. Based on the predicted printing performance level, the model can help automatically identify the possible cleaning cycle in practice. The results indicate that the proposed model architecture can predictively provide accurate solder paste printing process information to decision makers and increase the quality of the stencil printing process.

Binghamton University

Reliability Study of Low Silver Alloy Solder Pastes

Technical Library | 2016-09-01 16:21:11.0

Sn3.0Ag0.5Cu (SAC305) is currently the most popular near eutectic lead-free alloy used in the manufacturing processes. Over the last several years, the price of silver has dramatically increased driving a desire for lower silver alloy alternatives. As a result, there is a significant increase in the number of alternative low/no silver lead-free solder alloys available in the industry recently. Our previous study showed that many alternative low silver solder paste materials had good printing and wetting performance as compared to SAC305 solder pastes. However, there is lack of information on the reliability of alternative alloy solder joints assembled using alternative low silver alloy solder pastes.In this paper, we will present the reliability study of lead-free solder joints reflowed using various lead-free alloy solder pastes after thermal cycling test (3000 cycles, 0°C to 100°C). Six different lead-free pastes were investigated. SAC305 solder joints were used as the control. Low and no silver solder pastes and a low temperature SnBiAg solder pastes were also included.

Flex (Flextronics International)

Addressing the Challenge of Head-In-Pillow Defects in Electronics Assembly

Technical Library | 2013-12-27 10:39:21.0

The head-in-pillow defect has become a relatively common failure mode in the industry since the implementation of Pb-free technologies, generating much concern. A head-in-pillow defect is the incomplete wetting of the entire solder joint of a Ball-Grid Array (BGA), Chip-Scale Package (CSP), or even a Package-On-Package (PoP) and is characterized as a process anomaly, where the solder paste and BGA ball both reflow but do not coalesce. When looking at a cross-section, it actually looks like a head has pressed into a soft pillow. There are two main sources of head-in-pillow defects: poor wetting and PWB or package warpage. Poor wetting can result from a variety of sources, such as solder ball oxidation, an inappropriate thermal reflow profile or poor fluxing action. This paper addresses the three sources or contributing issues (supply, process & material) of the head-in-pillow defects. It will thoroughly review these three issues and how they relate to result in head-in pillow defects. In addition, a head-in-pillow elimination plan will be presented with real life examples will be to illustrate these head-in-pillow solutions.

Indium Corporation

Challenges for Step Stencils with Design Guidelines for Solder Paste Printing

Technical Library | 2015-08-25 13:51:27.0

The stencil printing process is one of the most critical processes in the electronic production. Due to the requirement: "faster and smaller" it is necessary to place components with different paste volume close together without regard to solder paste printing. In our days it is no longer possible to control the solder paste volume only by adjustment of the aperture dimensions. The requirements of solder paste volumes for specific components are realized by different thicknesses of metal sheets in one stencil with so called step stencils. The step-down stencil is required when it is desirable to print fine-pitch devices using a thinner stencil foil, but print other devices using a thicker stencil foil. The paper presents the innovative technology of step-up and step-down stencils in a laser cutting and laser welding process. The step-up/step-down stencil is a special development for the adjustment of solder paste quantity, fulfilling the needs of placement and soldering. This includes the laser cutting and laser welding process as well as the resulting stencil characteristics and the potential of the printing process.

LaserJob

Evaluation of Under-Stencil Cleaning Papers

Technical Library | 2016-08-04 14:33:23.0

Solder paste screen printing is known to be one of the most difficult processes to quality assure in Printed Board Assembly (PBA) manufacturing. An important process step in solder paste screen printing is the under stencil cleaning process and one of the key materials in this process is the cleaning paper1. This, often neglected, material affects the cleaning process and thereby also the print quality. It is therefore important to perform tests of different cleaning papers before one could be chosen. This article describes how cleaning papers can be tested and it also tells how big differences it can be between different materials.

Ericsson AB


solder paste print defects searches for Companies, Equipment, Machines, Suppliers & Information