Technical Library: solder paste qfp (Page 15 of 18)

Solder Paste Stencil Design for Optimal QFN Yield and Reliability

Technical Library | 2015-06-11 21:20:29.0

The use of bottom terminated components (BTC) has become widespread, specifically the use of Quad Flat No-lead (QFN) packages. The small outline and low height of this package type, improved electrical and thermal performance relative to older packaging technology, and low cost make the QFN/BTC attractive for many applications.Over the past 15 years, the implementation of the QFN/BTC package has garnered a great amount of attention due to the assembly and inspection process challenges associated with the package. The difference in solder application parameters between the center pad and the perimeter pads complicates stencil design, and must be given special attention to balance the dissimilar requirements

Lockheed Martin Corporation

Does Thermal Cycling Impact the Electrical Reliability of a No-Clean Solder Paste Flux Residue

Technical Library | 2018-08-29 21:17:53.0

No-clean solder pastes are widely used in a number of applications that are exposed to wide variations in temperature during the life of the assembled electronics device. Some have observed that cracks can and do form in flux residue and have postulated that this is the result of or exacerbated by temperature cycling. Furthermore, the potential exists for the flux residue to soften or liquefy at elevated temperatures, and even flow if orientated parallel to gravity. In situations such as in automotive electronics, where significant temperature cycling is a reality and high reliability is a must, concern sometimes exists that the cracking and possible softening or liquefying of the residue may have a deleterious effect on the electrical reliability of the flux residue. This paper will attempt to address this concern.

Indium Corporation

Deposition of Solder Paste into High Density Cavity Assemblies

Technical Library | 2018-02-28 22:28:30.0

Circuit functional density requirements continue to drive innovative approaches to high performance packaging. Some new approaches include; aggressive space reduction, embedded solutions, and those that offer some form of risk reduction and rework potential are now options that are being explored by customers. Requirements for assembly of these types of packages necessitate the deposition of solder paste and assembly of components into cavities of the substrates to gain z-axis density as well as area functional density. Advances in the fabrication of PWB’s with cavities using newly developed laser micro-fabrication processes along with increased circuit pitch density of 50 micron lines and spaces permit new applications for high performance electronic substrates. First published at SMTA Pan Pacific Symposium

Celestica Corporation

Solder Paste Inspection Technologies: 2D-3D Correlation

Technical Library | 2008-05-28 18:41:53.0

This paper describes correlation between a true 2D area measurement (e.g. printer) and a height map generated area from a SPI system. In addition, this paper will explore the correlation between area/volume measurements and bridge detection between 2D/3D techniques. The ultimate goal is to arm the process engineers with information that can be used to make decision that will impact defects, cost, throughput and Return On Investment.

Speedline Technologies, Inc.

Solder Paste Printing – the Most Critical Part of Building a Quality PCB Explained

Technical Library | 2017-11-03 13:39:06.0

If someone were to ask what the most important part of their favorite electronic device is, they are likely to point to the printed circuit board (PCB) responsible for making the device work before moving on to other components. From large motherboards to tiny chips, most of the technology that retail consumers take for granted comes down to a properly installed and calibrated PCB.

Power Design Services

Study on Solder Joint Reliability of Fine Pitch CSP

Technical Library | 2015-12-31 15:19:28.0

Today's consumer electronic product are characterized by miniatuization, portability and light weight with high performance, especially for 3G mobile products. In the future more fine pitch CSPs (0.4mm) component will be required. However, the product reliability has been a big challenge with the fine pitch CSP. Firstly, the fine pitch CSPs are with smaller solder balls of 0.25mm diameter or even smaller. The small solder ball and pad size do weaken the solder connection and the adhesion of the pad and substrate, thus the pad will peel off easily from the PCB substrate. In addition, miniature solder joint reduce the strength during mechanical vibration, thermal shock, fatigue failure, etc. Secondly, applying sufficient solder paste evenly on the small pad of the CSP is difficult because stencil opening is only 0.25mm or less. This issue can be solved using the high end type of stencil such as Electroforming which will increase the cost.

Flex (Flextronics International)

Factors That Influence Side-Wetting Performance on IC Terminals

Technical Library | 2023-08-04 15:27:30.0

A designed experiment evaluated the influence of several variables on appearance and strength of Pb-free solder joints. Components, with leads finished with nickel-palladium-gold (NiPdAu), were used from Texas Instruments (TI) and two other integrated circuit suppliers. Pb-free solder paste used was tin-silver-copper (SnAgCu) alloy. Variables were printed wiring board (PWB) pad size/stencil aperture (the pad finish was consistent; electrolysis Ni/immersion Au), reflow atmosphere, reflow temperature, Pd thickness in the NiPdAu finish, and thermal aging. Height of solder wetting to component lead sides was measured for both ceramic plate and PWB soldering. A third response was solder joint strength; a "lead pull" test determined the maximum force needed to pull the component lead from the PWB. This paper presents a statistical analysis of the designed experiment. Reflow atmosphere and pad size/stencil aperture have the greatest contribution to the height of lead side wetting. Reflow temperature, palladium thickness, and preconditioning had very little impact on side-wetting height. For lead pull, variance in the data was relatively small and the factors tested had little impact.

Texas Instruments

Factors That Influence Side-Wetting Performance on IC Terminals

Technical Library | 2024-04-08 15:46:36.0

A designed experiment evaluated the influence of several variables on appearance and strength of Pb-free solder joints. Components, with leads finished with nickel-palladium-gold (NiPdAu), were used from Texas Instruments (TI) and two other integrated circuit suppliers. Pb-free solder paste used was tin-silver-copper (SnAgCu) alloy. Variables were printed wiring board (PWB) pad size/stencil aperture (the pad finish was consistent; electrolysis Ni/immersion Au), reflow atmosphere, reflow temperature, Pd thickness in the NiPdAu finish, and thermal aging. Height of solder wetting to component lead sides was measured for both ceramic plate and PWB soldering. A third response was solder joint strength; a "lead pull" test determined the maximum force needed to pull the component lead from the PWB. This paper presents a statistical analysis of the designed experiment. Reflow atmosphere and pad size/stencil aperture have the greatest contribution to the height of lead side wetting. Reflow temperature, palladium thickness, and preconditioning had very little impact on side-wetting height. For lead pull, variance in the data was relatively small and the factors tested had little impact.

Texas Instruments

Understanding the Effect of Different Heating Cycles on Post-Soldering Flux Residues and the Impact on Electrical Performance

Technical Library | 2018-11-20 21:33:57.0

There are several industry-accepted methods for determining the reliability of flux residues after assembly. The recommended methods of test sample preparation do not always closely mimic the thermal cycle experienced by an assembly. Therefore, extraction from actual assemblies has become a popular method of process control to assess consistency of post-reflow cleanliness. Every method of post-reflow flux residue characterization will depend on the reflow process followed to prepare the coupon.This investigation will focus on the effect of thermal conditions on the remainder of active ingredients in flux residues after assembly with no-clean solder pastes.

Indium Corporation

Board Design and Assembly Process Evaluation for 0201 Components on PCBs

Technical Library | 2023-05-02 19:06:43.0

As 0402 has become a common package for printed circuit board (PCB) assembly, research and development on mounting 0201 components is emerging as an important topic in the field of surface mount technology for PWB miniaturization. In this study, a test vehicle for 0201 packages was designed to investigate board design and assembly issues. Design of Experiment (DOE) was utilized, using the test vehicle, to explore the influence of key parameters in pad design, printing, pick-andplace, and reflow on the assembly process. These key parameters include printing parameters, mounting height or placement pressure, reflow ramping rate, soak time and peak temperature. The pad designs consist of rectangular pad shape, round pad shape and home-based pad shape. For each pad design, several different aperture openings on the stencil were included. The performance parameters from this experiment include solder paste height, solder paste volume and the number of post-reflow defects. By analyzing the DOE results, optimized pad designs and assembly process parameters were determined.

Flextronics International


solder paste qfp searches for Companies, Equipment, Machines, Suppliers & Information

Void Free Reflow Soldering

High Resolution Fast Speed Industrial Cameras.
Selective Soldering Nozzles

Nozzles, Feeders, Spare Parts - Siemens, Fuji, Juki, Yamaha, etc...
Voidless Reflow Soldering

High Throughput Reflow Oven
PCB Handling with CE

World's Best Reflow Oven Customizable for Unique Applications
Fully Automatic BGA Rework Station

"回流焊炉"