Technical Library: solder paste thickness (Page 9 of 19)

Hidden Head-In-Pillow soldering failures

Technical Library | 2022-12-23 20:44:54.0

One of the upcoming reliability issues which is related to the lead-free solder introduction, are the headin-pillow solderability problems, mainly for BGA packages. These problems are due to excessive package warpage at reflow temperature. Both convex and concave warpage at reflow temperature can lead to the head-in-pillow problem where the solder paste and solder ball are in mechanical contact but not forming one uniform joint. With the thermo-Moiré profile measurements, this paper explains for two flex BGA packages the head-in-pillow. Both local and global height differences higher than 100 µm have been measured at solder reflow temperature. This can be sufficient to have no contact between the molten solder ball and solder paste. Finally, the impact of package drying is measured

IMEC

True Height Measurement in Solder Paste Inspection

Technical Library | 2015-04-29 03:48:39.0

SPI equipment is routinely used in Printed Circuit Board (PCB) manufacturing to monitor and control one of the most crucial steps affecting the finished quality of circuit board. Solder paste deposition is the key process in board assembly operations using SMT techniques. Our LSM™ system was the industry's first popular method of manually inspecting solder paste; our SE systems revolutionized SMT production by offering an automated method for performing in-process 3D inspection on the assembly line. SPI systems measure the height and volume of the solder pads before the components are applied and the solder melted, and when used properly, can reduce the incidence of solder-related defects to statistically insignificant amounts. Critical to the SPI measurement is the accuracy of the height measurement because that has a direct correlation with solder volume and defects.

CyberOptics Corporation

Transient Solder Separation of BGA Solder Joint During Second Reflow Cycle

Technical Library | 2019-05-15 22:26:02.0

As the demand for higher routing density and transfer speed increases, Via-In-Pad Plated Over (VIPPO) has become more common on high-end telecommunications products. The interactions of VIPPO with other features used on a PCB such as the traditional dog-bone pad design could induce solder joints to separate during the second and thereafter reflows. The failure has been successfully reproduced, and the typical failure signature of a joint separation has been summarized.To better understand the solder separation mechanism, this study focuses on designing a test vehicle to address the following three perspectives: PCB material properties, specifically the Z-direction or out-of-plane Coefficient of Thermal Expansion (CTE); PCB thickness and back drill depth; and quantification of the driving force magnitude beyond which the separation is due to occur.

Cisco Systems, Inc.

AIM Tech Tip Article: Pretty Slick

Technical Library | 2022-06-20 21:01:37.0

We've been doing a lot of print testing in our lab. In our first set of published results, "The Impact of Reduced Solder Alloy Powder Size on Solder Paste Print Performance1" from IPC/APEX 2016, we revealed a hierarchy of input variables to maximize solder paste transfer efficiency and minimize variation. In that study, we used a fully-optioned stencil as part of the equipment set. In order to tease out the data we were looking for, we could not lose critical information to the noise of stencil-induced variations.

AIM Solder

Low Melting Temperature Sn-Bi Solder: Effect of Alloying and Nanoparticle Addition on the Microstructural, Thermal, Interfacial Bonding, and Mechanical Characteristics

Technical Library | 2021-05-13 16:03:25.0

Sn-based lead-free solders such as Sn-Ag-Cu, Sn-Cu, and Sn-Bi have been used extensively for a long time in the electronic packaging field. Recently, low-temperature Sn-Bi solder alloys attract much attention from industries for flexible printed circuit board (FPCB) applications. Low melting temperatures of Sn-Bi solders avoid warpage wherein printed circuit board and electronic parts deform or deviate from the initial state due to their thermal mismatch during soldering. However, the addition of alloying elements and nanoparticles Sn-Bi solders improves the melting temperature, wettability, microstructure, and mechanical properties. Improving the brittleness of the eutecticSn-58wt%Bi solder alloy by grain refinement of the Bi-phase becomes a hot topic. In this paper, literature studies about melting temperature, microstructure, inter-metallic thickness, and mechanical properties of Sn-Bi solder alloys upon alloying and nanoparticle addition are reviewed

University of Seoul

The Future of Solder Joint Encapsulant

Technical Library | 2016-01-08 11:56:03.0

Solder joint encapsulant adhesives have been successfully used to enhance the strength of solder joints and improve thermal cycling as well as drop performance in finished products. The use of solder joint encapsulant adhesives can eliminate the need for underfill materials and the underfill process altogether, thus simplifying rework, which results in a lower cost of ownership.Solder joint encapsulant adhesives include: low temperature and high temperature solder joint encapsulant adhesives, and their derivatives. Each solder joint encapsulant adhesive has: unfilled and filled solder joint encapsulant adhesives, and solder joint encapsulant paste. Each solder joint encapsulant product has been designed for different applications. In this paper, we are going to discuss the details and future of solder joint encapsulant adhesives.

YINCAE Advanced Materials, LLC.

A Low Temperature Solder Joint Encapsulant for Sn/Bi Applications

Technical Library | 2016-01-12 11:05:28.0

The electronic industry is currently very interested in low temperature soldering processes such as using Sn/Bi alloy to improve process yield, eliminate the head-in-pillow effect, and enhance rework yield. However, Sn/Bi alloy is not strong enough to replace lead-free (SAC) and eutectic Sn/Pb alloys in most applications. In order to improve the strength of Sn/Bi solder joints, enhance mechanical performance, and improve reliability properties such as thermal cycling performance of soldered electronic devices, YINCAE has developed a low temperature solder joint encapsulant for Sn/Bi soldering applications. This low temperature solder joint encapsulant can be dipped, dispensed, or printed. After reflow with Sn/Bi solder paste or alloy, solder joint encapsulant encapsulates the solder joint. As a result, the strength of solder joints is enhanced by several times, and thermal cycling performance is significantly improved. All details will be discussed in this paper.

YINCAE Advanced Materials, LLC.

A Novel Epoxy Flux On Solder Paste For Assembling Thermally Warped POP

Technical Library | 2017-08-17 12:23:27.0

A novel epoxy flux EF-A was developed with good compatibility with no-clean solder pastes, and imparts high reliability for BGA assembly at a low cost. This compatibility with solder pastes is achieved by a well-engineered miscibility between epoxy and no-clean solder paste flux systems, and is further assured with the introduction of a venting channel. The compatibility enables a single bonding step for BGAs or CSPs, which exhibit high thermal warpage, to form a high-reliability assembly. Requirements in drop test, thermal cycling test (TCT), and SIR are all met by this epoxy flux, EF-A. The high viscosity stability at ambient temperature is another critical element in building a robust and userfriendly epoxy flux system. EF-A can be deposited with dipping, dispensing, and jetting. Its 75°C Tg facilitates good reworkability and minimizes the adverse impact of unfilled underfill material on TCT of BGA assemblies.

Indium Corporation

Using Rheology Measurement As A Potentially Predictive Tool For Solder Paste Transfer Efficiency And Print Volume Consistency

Technical Library | 2020-07-02 13:29:37.0

Industry standards such as J-STD-005 and JIS Z 3284-1994 call for the use of viscosity measurement(s) as a quality assurance test method for solder paste. Almost all solder paste produced and sold use a viscosity range at a single shear rate as part of the pass-fail criteria for shipment and customer acceptance respectively. As had been reported many times, an estimated 80% of the defects associated with the surface mount technology process involve defects created during the printing process. Viscosity at a single shear rate could predict a fatal flaw in the printability of a solder paste sample. However, false positive single shear rate viscosity readings are not unknown.

Alpha Assembly Solutions

How to Manage Material Outgassing in Reflow Oven

Technical Library | 2020-11-24 23:12:27.0

In a lead-free reflow process, temperatures are higher, and materials use outgasses more than in a leaded reflow process. The trends toward higher density populated boards and more pin-in-paste technology also increase solder paste use. More components and more solder paste result in more outgassing of chemistry during the reflow process. Some assemblies report condensation of vapors when the cold printed circuit board enters the oven. Little is known about the interaction between these condensed materials in terms of the interaction between these condensed materials and the reliability of the assembly. Apart from the question of reliability, a printed circuit board contaminated with a small film of residues after reflow soldering is not desirable.

Vitronics Soltec


solder paste thickness searches for Companies, Equipment, Machines, Suppliers & Information

Circuit Board, PCB Assembly & electronics manufacturing service provider

Wave Soldering 101 Training Course
pressure curing ovens

Software for SMT placement & AOI - Free Download.
High Throughput Reflow Oven

High Precision Fluid Dispensers
Void Free Reflow Soldering

World's Best Reflow Oven Customizable for Unique Applications
Global manufacturing solutions provider

High Resolution Fast Speed Industrial Cameras.