Technical Library: solder peel off (Page 1 of 2)

Off-line Selective Wave Soldering Machines: The Best Way to Solder Complex PCBs

Technical Library | 2023-09-16 06:04:19.0

Off-line selective wave soldering machines are the best way to solder complex PCBs. They allow you to solder only the components that need to be soldered, saving time and material.

I.C.T ( Dongguan Intercontinental Technology Co., Ltd. )

Lead-Free Risk Mitigation -- A Case Study

Technical Library | 2020-07-01 19:45:04.0

A company approached ACI Technologies (ACI) for assistance with a new product that was about to undergo its initial proof-of-concept prototype build. This product was an item that was being furnished to the Department of Defense for a program designed to increase the technical capabilities of computer equipment issued to the war fighter. The requirements for this item specified the use of tin-lead solder during assembly of production units. One of the main responsibilities for ACI during this project was to assist the client in mitigating the risk introduced using commercial off-the-shelf materials that may be lead-free.

ACI Technologies, Inc.

Platings for Interconnections

Technical Library | 2019-06-04 10:19:46.0

Interconnection technology relies very heavily on the ability of the conductors on a printed wiring assembly to maintain reliable signal integrity. Harsh environmental factors can precipitate a loss of conductivity due to oxidation and corrosion. Connections are typically soldered or inserted using pressure fitted connectors to obtain enough surface contact to meet the electrical conductivity requirements. In pressure contacts, surface integrity is especially critical where the abrasive effects of retraction and insertion can wear off the metallic finish from the contact area. This can expose the underlying copper or nickel and lead to increased resistance at the contact points. These types of conductors are frequently found in card edge connectors where the terminations are plated with a layer of nickel and gold (frequently referred to as gold fingers). A hard gold is typically used containing very small amounts of nickel and cobalt to increase the wear resistance.

ACI Technologies, Inc.

Made in Japan: Solder Paste Jet Dispensing Machine

Technical Library | 2024-03-19 07:58:40.0

Introduction of Solder Paste Jet Dispensing Machine Step into the future of manufacturing with the Solder Paste Jet Dispensing Machine, meticulously crafted in Japan under the esteemed I.C.T brand. This cutting-edge equipment represents the pinnacle of precision engineering, delivering unrivaled performance and reliability. Let's dive into its exceptional features and applications. Transmission Structure System of Solder Paste Jet Dispensing Machine At the heart of this Solder Paste Jet Dispensing Machine lies a meticulously designed transmission structure system. Powered by X Y linear motor drive control, it achieves unprecedented precision in positioning. With a reciprocating position accuracy of 3σ±5um and a dynamic position accuracy of 3σ±3um across the X, Y, and Z axes, it ensures flawless execution of tasks with minimal deviation. The load-type gantry structure further enhances stability and accuracy, guaranteeing consistent performance even during high-speed operations. Advanced Function Configuration Flexibility and customization are the hallmarks of the Solder Paste Jet Dispensing Machine. It features a customizable platform tailored to meet the specific needs of diverse applications, ensuring optimal performance and efficiency. Additionally, the machine boasts advanced functionalities such as automatic correction of substrate warp height and real-time penetration monitoring. Equipped with dual cameras, it provides precise feedback for adjustments during the filling process, ensuring unmatched precision and quality. Function configuration.jpg Vision Non-stop Experience uninterrupted precision with the Vision Non-stop functionality of this machine. Capable of detecting 100 chips per second, it automatically identifies position and height deviations, enabling real-time compensation for coating actions. Dual compensation for path and glue amount further optimizes efficiency, minimizing waste and maximizing productivity. With its ability to print solder paste dots as small as 110um, it's perfectly suited for high-precision applications in ICs, BGAs, and beyond. Versatility in Configuration Options and Applications Adaptability is key in modern manufacturing, and the Solder Paste Jet Dispensing Machine delivers on all fronts. Offering a range of configuration options, including different valves tailored to various material viscosities and fluidity, it ensures optimal performance across diverse production scenarios. From semiconductor packages to LED back-end Mini-LED production, its versatility knows no bounds, making it an indispensable asset in a wide range of industries. Explore the Future of Manufacturing with I.C.T Join the ranks of industry leaders embracing the future of manufacturing with I.C.T's Solder Paste Jet Dispensing Machine. With its unrivaled precision, speed, and reliability, it's set to revolutionize your production processes and propel your business to new heights of success. Don't just keep up with the competition--surpass it with I.C.T's cutting-edge solutions. Unlock the Potential of Precision Manufacturing Delve deeper into the transformative power of precision manufacturing and discover how the Solder Paste Jet Dispensing Machine can unlock new possibilities for your business. From reducing production costs to improving product quality, the benefits are endless. Partner with I.C.T today and embark on a journey towards manufacturing excellence. Conclusion In conclusion, our Solder Paste Jet Dispensing Machine embodies the fusion of Japanese precision and I.C.T reliability, offering unparalleled efficiency in solder paste dispensing. With its advanced features and customizable options, it caters to the diverse needs of modern manufacturing processes. Experience the pinnacle of dispensing technology with our Solder Paste Jet Dispensing Machine. Overseas Technical Support by I.C.T At I.C.T, our commitment to customer satisfaction extends beyond the initial purchase. We provide comprehensive overseas technical support, including machine installation, debugging, and customer training. Our dedicated team ensures that your production line runs smoothly from the first product off the line to the seamless delivery of the machine. Partner with I.C.T today and elevate your manufacturing precision with our Solder Paste Jet Dispensing Machine. Contact us now to learn more about our solutions and take your production processes to new heights of efficiency and reliability.

I.C.T ( Dongguan ICT Technology Co., Ltd. )

Study on Solder Joint Reliability of Fine Pitch CSP

Technical Library | 2015-12-31 15:19:28.0

Today's consumer electronic product are characterized by miniatuization, portability and light weight with high performance, especially for 3G mobile products. In the future more fine pitch CSPs (0.4mm) component will be required. However, the product reliability has been a big challenge with the fine pitch CSP. Firstly, the fine pitch CSPs are with smaller solder balls of 0.25mm diameter or even smaller. The small solder ball and pad size do weaken the solder connection and the adhesion of the pad and substrate, thus the pad will peel off easily from the PCB substrate. In addition, miniature solder joint reduce the strength during mechanical vibration, thermal shock, fatigue failure, etc. Secondly, applying sufficient solder paste evenly on the small pad of the CSP is difficult because stencil opening is only 0.25mm or less. This issue can be solved using the high end type of stencil such as Electroforming which will increase the cost.

Flex (Flextronics International)

A Novel Solution for No-Clean Flux not Fully Dried under Component Terminations

Technical Library | 2017-08-17 12:28:30.0

At SMT assembly, flux outgassing/drying is difficult for devices with poor venting channel, and resulted in insufficiently dried/burnt-off flux residue for no-clean process. Examples including: Large low stand-off components such as QFN, LGA Components covered under electromagnetic shield which has either no or few venting holes Components assembled within cavity of board Any other devices with small open space around solder joints

Indium Corporation

Soldering to Gold Over Nickel Surfaces

Technical Library | 1999-05-07 11:28:39.0

There are many things that can go wrong when soldering to gold plate over nickel surfaces. First of all, we know that gold and solder are not good friends, as any time solder comes into contact with gold, something seems to go wrong. Either the solder bonds to the gold and eventually pulls off as the tin and gold cross-migrate, leaving voids; or the solder completely removes the gold and is expected to bond to the metal which was under the gold.

Kester

Characterize and Understand Functional Performance Of Cleaning QFN Packages on PCB Assemblies

Technical Library | 2022-12-19 18:59:51.0

Material and Process Characterization studies can be used to quantify the harmful effects that might arise from solder flux and other process residues left on external surfaces after soldering. Residues present on an electronic assembly can cause unwanted electrochemical reactions leading to intermittent performance and total failure. Components with terminations that extend underneath the package can trap flux residue. These bottom terminated components are flush with the bottom of the device and can have small solderable terminations located along the perimeter sides of the package. The clearance between power and ground render high electrical forces, which can propagate electrochemical interactions when exposed to atmospheric moisture (harsh environments). The purpose of this research is to predict and understand the functional performance of residues present under single row QFN component packages. The objective of the research study is to develop and collect a set of guidelines for understanding the relationship between ionic contamination and electrical performance of a BTC component when exposed to atmospheric moisture and the trade-offs between electrical, ionic contamination levels, and cleanliness. Utilizing the knowledge gained from undertaking the testing of QFN components and associated DOE, the team will establish a reference Test Suite and Test Spec for cleanliness.

iNEMI (International Electronics Manufacturing Initiative)

The Risk And Solution For No-Clean Flux Not Fully Dried Under Component Terminations the Risk And Solution For No-Clean Flux Not Fully Dried Under Component Terminations

Technical Library | 2020-11-24 23:01:04.0

The miniaturization trend is driving industry to adopting low standoff components or components in cavity. The cost reduction pressure is pushing telecommunication industry to combine assembly of components and electromagnetic shield in one single reflow process. As a result, the flux outgassing/drying is getting very difficult for devices due to poor venting channel. This resulted in insufficiently dried/burnt-off flux residue. For a properly formulated flux, the remaining flux activity posed no issue in a dried flux residue for no-clean process. However, when venting channel is blocked, not only solvents remain, but also activators could not be burnt off. The presence of solvents allows mobility of active ingredients and the associated corrosion, thus poses a major threat to the reliability. In this work, a new halogen-free no-clean SnAgCu solder paste, 33-76-1, has been developed. This solder paste exhibited SIR value above the IPC spec 100 MΩ without any dendrite formation, even with a wet flux residue on the comb pattern. The wet flux residue was caused by covering the comb pattern with 10 mm × 10 mm glass slide during reflow and SIR testing in order to mimic the poorly vented low standoff components. The paste 33-76-1 also showed very good SMT assembly performance, including voiding of QFN and HIP resistance. The wetting ability of paste 33-76-1 was very good under nitrogen. For air reflow, 33-76-1 still matched paste C which is widely accepted by industry for air reflow process. The above good performance on both non-corrosivity with wet flux residue and robust SMT process can only be accomplished through a breakthrough in flux technology.

Indium Corporation

LEAD-FREE FLUX TECHNOLOGY AND INFLUENCE ON CLEANING

Technical Library | 2022-10-11 17:27:08.0

Lead-free flux technology for electronic industry is mainly driven by high soldering temperature, high alloy surface tension, miniaturization, air soldering due to low cost consideration, and environmental concern. Accordingly, the flux features desired included high thermal stability, high resistance against burn-off, high oxidation resistance, high oxygen barrier capability, low surface tension, high fluxing capacity, slow wetting, low moisture pickup, high hot viscosity, and halogen-free. For each of the features listed above, corresponding desired chemical structures can be deduced, and the impact of those structures on flux residue cleanability can be speculated. Overall, lead-free flux technology results in a greater difficulty in cleaning. Cleaner with a better matching solvency for the residue as well as a higher cleaning temperature or agitation are needed. Alkaline and polar cleaner are often needed to deal with the larger quantity of fluxing products. Reactive cleaner is also desired to address the side reaction products such as crosslinked residue.

Indium Corporation

  1 2 Next

solder peel off searches for Companies, Equipment, Machines, Suppliers & Information

Selective Soldering Nozzles

Training online, at your facility, or at one of our worldwide training centers"
Sell Your Used SMT & Test Equipment

High Resolution Fast Speed Industrial Cameras.
SMT feeders

Easily dispense fine pitch components with ±25µm positioning accuracy.
2024 Eptac IPC Certification Training Schedule

Software for SMT placement & AOI - Free Download.
design with ease with Win Source obselete parts and supplies

Private label coffee for your company - your logo & message on each bag!