Technical Library: solder preforms placement data (Page 1 of 1)

Optimizing Reflowed Solder TIM (sTIMs) Processes for Emerging Heterogeneous Integrated Packages

Technical Library | 2023-01-17 17:12:33.0

Reflowed indium metal has for decades been the standard for solder thermal interface materials (solder TIMs or sTIMs) in most high-performance computing (HPC) TIM1 applications. The IEEE Heterogeneous Integration Thermal roadmap states that new thermal interface materials solutions must provide a path to the successful application of increased total-package die areas up to 100cm2. While GPU architectures are relatively isothermal during usage, CPU hotspots in complex heterogeneously-integrated modules will need to be able to handle heat flux hotspots up to 1000W/cm2 within the next two years. Indium and its alloys are used as reflowed solder thermal interface materials in both CPU and GPU "die to lid/heat spreader" (TIM1) applications. Their high bulk thermal conductivity and proven long-term reliability suit them well for extreme thermomechanical stresses. Voiding is the most important failure mode and has been studied by x-ray. The effects of surface pretreatment, pressure during reflow, solder flux type/fluxless processing, and preform design parameters, such as alloy type, are also examined. The paper includes data on both vacuum and pressure (autoclave) reflow of sTIMs, which is becoming necessary to meet upcoming requirements for ultralow voiding in some instances.

Heller Industries Inc.

SMT007-MIRTEC Intelligent Factory Automation Article-November 2020

Technical Library | 2020-12-02 20:36:54.0

Industry 4.0 is a topic of much discussion within the electronics manufacturing industry. Manufacturers and vendors are trying to come to terms with what that means. In the most simplistic of terms, Industry 4.0 is a trend toward automation and data exchange within the manufacturing process. This basically requires connectivity and communication from machine to machine within the manufacturing line. The challenge is to collect data from each of the systems within the line and make that data available to the rest of the machines. Without test and inspection, there is no Industry 4.0. The whole purpose of test and inspection is to collect actionable data that may be used to reduce defects and maximize efficiency within the manufacturing line. The goal is to minimize scrap and get a really good handle on those process parameters that need to be put in place to manufacture products the right way the first time. For maximum efficiency, three inspection systems are required within the production line. These are solder paste inspection (SPI) post-solder deposition, automated optical inspection (AOI) post-placement, and AOI post-reflow. This requires a substantial investment; however, the combination of all three inspection machines is really the only true way to provide feedback for each stage of the manufacturing process.

MIRTEC Corp

Minimizing Voiding In QFN Packages Using Solder Preforms

Technical Library | 2012-07-27 11:18:29.0

First published in the 2012 IPC APEX EXPO technical conference proceedings. The focus of this paper will quantify the preform requirements and process adjustments needed to use preforms in a standard SMT process. In addition, experimental data showing vo

Indium Corporation

  1  

solder preforms placement data searches for Companies, Equipment, Machines, Suppliers & Information

Thermal Interface Material Dispensing

World's Best Reflow Oven Customizable for Unique Applications
SMT feeders

Easily dispense fine pitch components with ±25µm positioning accuracy.
thru hole soldering and selective soldering needs

Component Placement 101 Training Course
SMT spare parts

Internet marketing services for manufacturing companies