Technical Library | 2021-07-06 21:13:36.0
The surface finishes commonly used on printed circuit boards (PCBs) have an effect on solder paste performance in the surface mount process. Some surface finishes are non-planar like hot air solder level (HASL) which can lead to inconsistencies in solder paste printing. Other surface finishes are difficult to wet during reflow like organic solderability preservative (OSP). What is the overall effect of surface finish on solder paste performance? Which solder paste is best for each surface finish? It is the goal of this paper to answer these questions.
Technical Library | 2008-04-29 15:50:45.0
The electronics industry is undergoing a materials evolution due to the pending Restriction of Hazardous Substances (RoHS) European Directive. Printed wiring board laminate suppliers, component fabricators, and printed wiring assembly operations are engaged in a multitude of investigations to determine what leadfree (Pbfree) material choices best fit their needs. The size and complexity of Pbfree implementation insures a transition period in which Pbfree and tin/lead solder finishes will be present on printed wiring assemblies
Technical Library | 2021-12-29 19:37:20.0
The purpose of this study was to compare the strength of the bond between resin and glass cloth for various composites (laminates) and its dependence on utilized soldering pad surface finishes. Moreover, the impact of surface finish application on the thermomechanical properties of the composites was evaluated. Three different laminates with various thermal endurances were included in the study. Soldering pads were covered with OSP and HASL surface finishes. The strength of the cohesion of the resin upper layer was examined utilizing a newly established method designed for pulling tests.
Technical Library | 2020-11-15 21:01:24.0
ENIG, electroless nickel immersion gold is now a well-regarded finish used to enhance and preserve the solder-ability of copper circuits. EPIG, electroless palladium immersion gold, is a new surface finish also for enhancing and preserving solder-ability but with the advantage of eliminating Electroless Nickel from the deposit layer. This feature has become increasingly important with the increasing use of high frequeny PWB designs whereby nickel's magnetic properties are detrimental. We examine these two finishes and their respective soldering characteristics as plated and after steam aging and offer an explanation for the performance deviation.
Technical Library | 2021-01-28 01:55:00.0
Printed circuit board surface finishes are a topic of constant discussion as environmental influences, such as the Restriction of Hazardous Substances (RoHS) Directive or technology challenges, such as flip chip and 01005 passive components, initiate technology changes. These factors drive the need for greater control of processing characteristics like coplanarity and solderability, which influence the selection of surface finishes and impact costs as well as process robustness and integrity. The ideal printed circuit board finish would have good solderability, long shelf life, ease of fabrication/processing, robust environmental performance and provide dual soldering/wirebonding capabilities; unfortunately no single industry surface finish possesses all of these traits. The selection of a printed circuit board surface finish is ultimately a series of compromises for a given application.
Technical Library | 2015-06-22 16:39:47.0
Surface finishing is an integral part of any PCB fabrication. It is generally applied to exposed Cu connectors and conductors on the board. Surface finishing has numerous important functions. It serves as a protective layer for the Cu connectors during storage. The surface finish helps minimize or reduce tarnish of the Cu substrate. Additionally, since it is the layer that comes into contact with other components during assembly, it ensures good solderability between the PCB and the component during assembly. Furthermore after assembly, the finish helps prolong the integrity of the solder joint during use. A general review of common PCB surface finishes is presented. The advantages and disadvantages of each are discussed and compared.
Technical Library | 2007-03-28 10:18:33.0
Legislation against the use of lead in electronics has been the driving force behind the use of lead-free solders, surface finishes, and component lead finishes. The major concern in using lead-free solders in the assembly and rework Chip Scale Packages (CSPs) is the relatively high temperatures that the components and the boards experience. Fine-pitch CSPs have very low standoff heights following assembly making inspection and rework of these components more difficult. One other concern pertinent to rework is the temperature of the neighboring components during rework. These issues, coupled with the limitations of rework equipment to handle lead-free reflow temperatures, make the task of reworking lead-free assemblies more challenging.
Technical Library | 2007-04-18 19:23:22.0
Recent investigations have revealed that Pb-free solder joints may be fragile, prone to premature interfacial failure particularly under shock loading, as initially formed or tend to become so under moderate thermal aging. Depending on the solder pad surface finish, different mechanisms are clearly involved, but none of the commonly used surface finishes appear to be consistently immune to embrittlement processes. This is of obvious concern for products facing relatively high operating temperatures for protracted times and/or mechanical shock or strong vibrations in service.
Technical Library | 2013-08-29 19:52:43.0
Au over Ni on Cu is a widely used printed circuit board (PCB) surface finish, under bump metallization (UBM), and component lead metallization. It is generally accepted that less than 3 wt.% Au in Sn-Pb solder joints inhibits formation of detrimental intermetallic compounds (IMC). However, the critical limit for Au content in Pb-free solder joints is not well established. Three surface-mount package platforms, one with a matte Sn surface finish and the others with Ni/Au finish, were soldered to Ni/Au-finished PCB using Sn-3.0Ag 0.5Cu (SAC305) solder, in a realistic manufacturing setting. The assembled boards were divided into three groups: one without any thermal treatment, one subjected to isothermal aging at 125°C for 30 days, and the third group aged at 125°C for 56 days...
Technical Library | 2019-04-17 21:29:14.0
Electroless nickel electroless palladium immersion gold (ENEPIG) surface finish for printed circuit board (PCB) has now become a key surface finish that is used for both tin-lead and lead-free solder assemblies. This paper presents the reliability of land grid array (LGA) component packages with 1156 pads assembled with tin-lead solder onto PCBs with an ENEPIG finish and then subjected to thermal cycling and then isothermal aging.