Technical Library | 2023-09-07 14:38:31.0
A repeat customer specializing in high-technology interconnect, sensor, and antenna solutions, partnered with us to dispense small volumes of solder paste (Indium 10.1 SAC305 T6SG 78%m) onto backplane connectors – gold pads 0.175mm x 0.225mm. We performed a test requiring 0.200mm diameter or smaller dots to demonstrate the dispensing capability required.
Technical Library | 2023-12-15 03:06:24.0
The first process in the SMT industry is solder paste printing. After the solder paste printing is completed, electronic components are attached to PCB pads through a SMT machine, and then reflow soldered. A preliminary PCB board is roughly processed. SMT is a combination of multiple devices, and such a line is called an SMT production line. Our common PCBA is processed through this process. In SMT technology, each process is very important, and poor quality can be caused by different process defects. Today, we are discussing the causes and countermeasures of SMT printing collapse.
Technical Library | 2007-02-01 10:08:40.0
The increased replacement of high lead count SMT devices with BGAs and other high ball count area array packages has brought increased challenges to PCB rework and repair. Often solder mask areas surrounding BGA pad areas are damaged when components are removed.
Technical Library | 2007-08-16 13:34:31.0
While experienced inspectors may be able to determine the aesthetic differences between a lead-free PCB assembly and a tin-lead version, one cannot rely on the "experienced eye". "Less wetting out to the pad edges" (Figure A) and "graininess and lack of shininess of the solder joint" (Figure B) are typical comments about some lead-free solder joints. However, in cases where a Nitrogen atmosphere was present during the reflow of the solder joint (Figure C), there will be little visual differences between the lead free alloys and their tin-lead counterparts.
Technical Library | 2007-01-31 15:17:04.0
The goal of this project is to evaluate the reliability of lead-free BGA solder joints with a variety of different pad sizes using several different BGA rework methods. These methods included BGAs reworked with both flux only and solder paste attachment techniques and with or without the use of the BEST stay in place StencilQuick™. The daisy chained test boards were placed into a thermal test chamber and cycled between -25ºC to 125ºC over a 30 minute cycle with a 30 minute dwell on each end of the cycle. Each BGA on the board was wired and the continuity assessed during the 1000 cycles the test samples were in the chamber.
Technical Library | 2022-07-11 09:24:48.0
The change of squeegee pressure has a significant impact on printing. Too small pressure will make the solder paste unable to effectively reach the bottom of the stencil opening and not be well deposited on the pad. Too much pressure will cause tin The paste is printed too thin and can even damage the stencil.
Technical Library | 2013-01-17 15:34:33.0
The use of an electroless nickel, immersion gold (ENIG) surface finish comes with the inherent potential risk of Black Pad failures that can cause fracture embrittlement at the interface between the solder and the metal pad. As yet, there is no conclusive agreed solution to effectively eliminate Black Pad failures. The case studies presented are intended to add to the understanding of the Black Pad failure mechanism and to identify both the plating and the subsequent assembly processes and conditions that can help to prevent the likelihood of Black Pad occurring.
Technical Library | 2015-08-13 15:52:40.0
Pad cratering has become more prevalent with the switch to lead free solders and lead free compatible laminates. This mainly is due to the use of higher reflow temperature, stiffer Pb-free solder alloys, and the more brittle Pb-free compatible laminates. However, pad cratering is difficult to detect by monitoring electric resistance since pad cratering initiates before an electrical failure occurs. Several methods have been developed to evaluate laminate materials' resistance to pad cratering. Pad-solder level tests include ball shear, ball pull and pin pull. The detailed methods for ball shear, ball pull, and pin pull testing are documented in an industry standard IPC-9708. Bansal, et al. proposed to use acoustic emission (AE) sensors to detect pad cratering during four-point bend test. Currently there is an industry-working group working on test guidelines for acoustic emission measurement during mechanical testing.
Technical Library | 2019-05-29 01:47:22.0
1.Vias near SMD pads: Solder can flow into the via after melted. As a result cold joint will appear in the end. Check the picture below. 2.Vias on SMD pads: Solder can flow into the via more easier after melted. Check the picture below. 3.Via opening without soldermask covered. When workers solder TH parts by hand, soldering iron can touch vias sometime, then tiny amounts molten solder will stay on vias. This can lead to electrical short easily. We recommend you make all vias tenting (covered by solder mask) if it is possible.
PCBNPI-Professional PCB Fab/PCB Assembly Service Provider From China
Technical Library | 2023-05-02 19:06:43.0
As 0402 has become a common package for printed circuit board (PCB) assembly, research and development on mounting 0201 components is emerging as an important topic in the field of surface mount technology for PWB miniaturization. In this study, a test vehicle for 0201 packages was designed to investigate board design and assembly issues. Design of Experiment (DOE) was utilized, using the test vehicle, to explore the influence of key parameters in pad design, printing, pick-andplace, and reflow on the assembly process. These key parameters include printing parameters, mounting height or placement pressure, reflow ramping rate, soak time and peak temperature. The pad designs consist of rectangular pad shape, round pad shape and home-based pad shape. For each pad design, several different aperture openings on the stencil were included. The performance parameters from this experiment include solder paste height, solder paste volume and the number of post-reflow defects. By analyzing the DOE results, optimized pad designs and assembly process parameters were determined.