Technical Library: standard for leaded smt (Page 1 of 3)

A Practical Investigation into the Use of No Lead Solders for SMT Reflow

Technical Library | 2023-01-17 17:29:40.0

A Practical Investigation into the Use of No Lead Solders for SMT Reflow

Heller Industries Inc.

JUKI PCB SMT Pick and Place Machines: The Gold Standard

Technical Library | 2023-09-16 07:16:54.0

JUKI is a leading manufacturer of SMT pick and place machines, and their products are known for their high quality, precision, and reliability. In this article, we will discuss the benefits of using JUKI PCB SMT pick and place machines, including: High accuracy and precision Fast production speeds Flexible capabilities Reliable performance

I.C.T ( Dongguan ICT Technology Co., Ltd. )

Crafting an Efficient SMT Conformal Coating Line for Double-Sided PCBA

Technical Library | 2023-11-09 08:53:45.0

Crafting an Efficient SMT Conformal Coating Line for Double-Sided PCBA In the intricate realm of electronics manufacturing, selecting the ideal SMT conformal coating line can seem like a challenging quest. The pursuit of a solution that seamlessly integrates efficiency, reliability, and performance is the ultimate goal. In this article, we embark on a journey to unravel the secrets of a standard SMT conformal coating line, using a captivating visual guide as our compass. The Symphony Of Components In An SMT Conformal Coating Line Picture a finely orchestrated symphony, with each instrument playing a unique role in this PCB coating process. The star performers in this lineup include: Transfer Conveyor: These act as the stage where the PCB's journey begins. Think of them as the entry and exit points for your precious boards, allowing a smooth, choreographed dance through the line. 1st Coating Machine: As the first movement in this musical journey, this machine, partnered with the initial curing station, lays down the foundation – applying adhesive to one side of the PCB. Inspection Conveyor: After the initial curing, our inspectors take center stage, using these transfer stations to carefully evaluate the coating's quality. 1st Curing Oven: This is where the magic happens. The first curing oven solidifies the adhesive applied in the previous act, setting the tone for a flawless performance. Flipper Machine: The flipper machine takes the spotlight, gracefully turning the PCB to reveal its other side, ensuring both faces receive their share of adhesion. 2nd Coating Machine: With a newfound perspective, the second coating machine takes the stage, applying adhesive to the reverse side of the PCB. 2nd Curing Oven: The grand finale! The second curing oven brings our symphony to a breathtaking close, solidifying the adhesive applied in the second act, creating a harmonious, dual-sided masterpiece. Efficiency Meets Dual-Side Coating This SMT conformal coating line is like a well-choreographed ballet that requires at least two dancers. One stands at the front, carefully loading PCBs onto the stage, guiding them through the first act. After the flip, the second dancer carries them through the second act, with both sides perfectly coated, ensuring a flawless performance for applications requiring dual-sided adhesion. UV Curing Oven For Illuminating Results For applications that embrace UV-curable adhesives, our line includes UV curing ovens, adding a layer of brilliance to the process and ensuring an efficient solidification of adhesives. Transfer Stations With A Touch Of Magic Within this symphony, the transfer stations wear a touch of magic – the second and fourth stations feature enchanting blue glass covers illuminated by embedded LED lights. These stations offer operators a clear view of the adhesive quality, allowing for meticulous inspections. The blue glass covers also act as protective shields, guarding freshly coated PCBs from the ever-present dust fairies. Certified Excellence: European Standards And CE Certification Ensuring that our performance meets the highest standards, our entire ensemble adheres to stringent European safety standards and proudly boasts CE certification, a testament to compliance with safety, health, and environmental protection requirements. A Variety Of Coating Machines For Your Unique Needs Our lineup doesn't just feature one star, but an ensemble of coating machines, including models like I.C.T-T550, I.C.T-T550U, I.C.T-T600, and I.C.T-T650. For an encore performance with detailed specifications of each model, please refer to our dedicated article. Additionally, for a captivating exploration of the right coating valve for your adhesive, please visit our comprehensive guide. Single-Sided PCB Coating For those who prefer a single board, our dedicated article on single-sided PCB coating is a spotlight on this specialized process. In the dynamic world of electronics manufacturing, our SMT conformal coating line stands as a versatile and reliable performance. With dual-sided coating capabilities, adherence to European safety standards, and CE certification, we offer a comprehensive platform for your coating needs. Join us in this symphony and explore our range of coating machines and accessories to enhance your conformal coating process. It's a performance that promises to leave you in awe!

I.C.T ( Dongguan ICT Technology Co., Ltd. )

Revolutionizing Tech: SMT Auto IC Programming Machine Mastery

Technical Library | 2023-12-27 12:27:29.0

Background Of SMT Auto IC Programming Machines In the dynamic landscape of electronics manufacturing, SMT Auto IC Programming Machines, also known as IC Programmers, have become indispensable tools. These machines play a crucial role in the semiconductor industry, addressing the escalating demand for efficient programming tools as electronic devices become more intricate. Specifically designed to load firmware or programs onto integrated circuits (ICs), these machines ensure the functionality of ICs and facilitate their seamless integration into various electronic applications. Significance Of SMT Auto IC Programming Machines The significance of SMT Auto IC Programming Machines lies in their ability to streamline the manufacturing process of electronic devices. ICs, ranging from microcontrollers to memory chips, serve as the central processing units in electronic systems. IC Programming Machines enable the customization of these ICs, allowing manufacturers to program specific functionalities, update firmware, and adapt to diverse applications. Furthermore, these machines contribute significantly to the rapid development of new products. In a market where time-to-market is critical, IC Programming Machines provide the flexibility to quickly program different ICs, reducing production lead times and enhancing overall efficiency. Operational Principles Of IC Programming Machines Hardware Architecture SMT Auto IC Programming Machines consist of a sophisticated hardware architecture comprising a controller, socket, pin detection system, and additional peripherals. The controller acts as the brain, orchestrating the programming process, while the socket provides a connection interface for the IC. Programming Algorithms At the core of IC Programming Machines are various programming algorithms encompassing essential operations such as erasure, writing, and verification. The choice of algorithms depends on the specific requirements of the IC and the desired functionality. Communication Protocols Effective communication between the IC Programming Machine and the target IC is facilitated by standardized communication protocols such as JTAG, SPI, and I2C. The selection of a particular protocol is influenced by factors such as data transfer speed, complexity, and compatibility with the IC. Advanced Features And Characteristics Equipped with advanced features like parallel programming, support for multiple ICs, and online programming, IC Programming Machines elevate their capabilities, enhancing production efficiency and flexibility. Practical Applications IC Programming Machines find practical applications across various industries, from automotive electronics to consumer electronics. Case studies illustrate how these machines contribute to improved production workflows and product quality by ensuring programmed ICs meet specific application requirements. Future Trends Looking ahead, the future of SMT Auto IC Programming Machines holds exciting prospects. Anticipated trends include advancements in programming speed, support for emerging communication protocols, and increased integration with smart manufacturing systems. These developments aim to address the evolving demands of the electronics industry. I.C.T-910 Programming Machine Invest in the I.C.T-910 for an efficient and reliable IC programming experience. The I.C.T-910 complies with European safety standards, holding a CE certificate that attests to its quality and adherence to safety regulations. Our skilled engineers at I.C.T are committed to ensuring your success by providing professional training and assistance with equipment installation. I.C.T: Your Comprehensive SMT Equipment Provider I.C.T stands as a comprehensive SMT equipment provider, offering end-to-end solutions for your SMT production line needs. Tailoring services to your specific requirements and product specifications, we conduct a thorough analysis to determine the precise SMT equipment that suits your needs. Our commitment is to deliver the highest quality and cost-effective solutions, ensuring optimal performance and efficiency for your production processes. Partner with I.C.T for a customized approach to SMT equipment that aligns perfectly with your manufacturing goals. Contact us for an inquiry today.

I.C.T ( Dongguan ICT Technology Co., Ltd. )

Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer

Technical Library | 2024-02-02 07:48:31.0

Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer In today's rapidly evolving electronics manufacturing landscape, optimizing efficiency, cost-effectiveness, and precision remains paramount. Businesses engaged in producing industrial control boards, computer motherboards, mobile phone motherboards, and mining machine boards face ongoing challenges in streamlining production processes. The integration of expensive equipment strains budgets, making the creation of an efficient, cost-effective high-speed SMT line a daunting task. However, a solution exists that seamlessly combines these elements into a singular, high-performance, and cost-effective SMT line. Let's delve into the specifics. A Comprehensive High-Speed SMT Line Our innovative solution amalgamates two pivotal components: a cutting-edge SMT (Surface Mount Technology) production line and a laser cutting line equipped with a depanelizer. The SMT Production Line The high-speed SMT line comprises several essential components, each fulfilling a unique role in the manufacturing process: 1. PCB Loader: This initial stage involves loading boards onto the production line with utmost care. Our Board Loader prioritizes safety, incorporating various safety light curtains and sensors to promptly halt operations and issue alerts in case of any anomalies. 2. Laser Marking Machine: Every PCB receives a unique two-dimensional code or barcode, facilitating comprehensive traceability. Despite the high-temperature laser process potentially leading to dust accumulation on PCB surfaces, our dedicated PCB Surface Cleaner swiftly addresses this issue. 3. SMT Solder Paste Printer: This stage involves applying solder paste to the boards, a fundamental step in the manufacturing process. 4. SPI (Solder Paste Inspection): Meticulous inspections are conducted at this stage. Boards passing inspection proceed through the NG (No Good) Buffer Conveyor to the module mounters. Conversely, "No Good" results prompt storage of PCBs in the NG Buffer Conveyor, capable of accommodating up to 25 PCBs. Operators can retrieve these NG boards for rework after utilizing our specialized PCB Mis Cleaner to remove solder paste. 5. Module Mounters: These machines excel in attaching small and delicate components, necessitating precision and expertise in the module mounting process. 6. Standard Pick And Place Machines: The selection of these machines is contingent upon your specific BOM (Bill of Materials) list. 7. Pre-Reflow AOI (Automated Optical Inspection): Boards undergo examination for component quality at this stage. Detected issues prompt the Sorting Conveyor to segregate boards for rework. 8. Reflow Oven: Boards undergo reflow soldering, with our Lyra series reflow ovens recommended for their outstanding features, including nitrogen capability, flux recycling, and water cooling function, ensuring impeccable soldering results. 9. Post-Reflow AOI: This stage focuses on examining soldering quality. Detected defects prompt the Sorting Conveyor to segregate boards for further inspection or rework. Any identified defects are efficiently addressed with the BGA rework station, maintaining the highest quality standards. 10. Laser Depanelizer: Boards advance to the laser depanelizer, where precision laser cutting, often employing green light for optimal results, ensures smoke-free, highly accurate separation of boards. 11. PCB Placement Machine: Cut boards are subsequently managed by the PCB Placement Machine, arranging them as required. With this, all high-speed SMT line processes are concluded. Efficiency And Output This production line demonstrates exceptional productivity when manufacturing motherboards with approximately 3000 electronic components, boasting the potential to assemble up to 180 boards within a single hour. Such efficiency not only enhances output but also ensures cost-effectiveness and precision in your manufacturing processes. At I.C.T, we specialize in crafting customized SMT production line solutions tailored to your product and specific requirements. Our equipment complies with European safety standards and holds CE certificates. For inquiries or to explore our exemplary post-sales support, do not hesitate to contact us. The I.C.T team is here to elevate your electronics manufacturing to new heights of efficiency and cost-effectiveness.

I.C.T ( Dongguan ICT Technology Co., Ltd. )

Performance of Kapton Stencils vs Stainless Steel Stencils for Prototype Printing Volumes Processes

Technical Library | 2013-07-03 10:31:54.0

It has been demonstrated in numerous pieces of work that stencil printing, one of the most complex PCB assembly processes, is one of the largest contributors to defects (Revelino et el). This complexity extends to prototype builds where a small number of boards need to be assembled quickly and reliably. Stencil printing is becoming increasingly challenging as packages shrink in size, increase in lead count and require closer lead spacing (finer pitch). Prototype SMT assembly can be further divided between industrial and commercial work and the DIYer, hobbyist or researcher groups. This second group is highly price sensitive when it comes to the materials used for the board assembly as their funds are sourced from personal or research monies as opposed to company funds. This has led to development of a lower cost SMT printing stencil made from plastic film as opposed to the more traditional stainless steel stencil used by industrial and commercial users.This study compares the performance of these two traditional materials and their respective impact on solder paste printing including efficiency and print quality.

BEST Inc.

Stencil Design for Lead-Free SMT Assembly

Technical Library | 2018-03-05 11:17:31.0

In order to comply with RoHS and WEEE directives, many circuit assemblers are transitioning some or all of their soldering processes from tin-lead to lead-free within the upcoming year. There are no drop-in replacement alloys for tin-lead solder, which is driving a fundamental technology change. This change is forcing manufacturers to take a closer look at everything associated with the assembly process: board and component materials, logistics and materials management, solder alloys and processing chemistries, and even soldering methods. Do not expect a dramatic change in soldering behavior when moving to lead-free solders. The melting points of the alloys are higher, but at molten temperatures the different alloys show similar behaviors in a number of respects. Expect subtler changes, especially near the edges of a process window that is assumed based on tin-lead experience rather than defined through lead-free experimentation. These small changes, many of them yet to be identified and understood, will manifest themselves with lower assembly yields. The key to keeping yields up during the transition to lead-free is quickly learning what and where the subtle distinctions are, and tuning the process to accommodate them.

Cookson Electronics

Durable Conductive Inks and SMD Attachment for Robust Printed Electronics

Technical Library | 2018-10-24 18:04:12.0

Polymer Thick Film (PTF)-based printed electronics (aka Printed Electronics) has improved in durability over the last few decades and is now a proven alternative to copper circuitry in many applications once thought beyond the capability of PTF circuitry. This paper describes peak performance and areas for future improvement.State-of-the-art PTF circuitry performance includes the ability to withstand sharp crease tests, 85C/85%RH damp heat 5VDC bias aging (silver migration), auto seat durability cycling, SMT mandrel flexing, and others. The IPC/SGIA subcommittee for Standards Tests development has adopted several ASTM test methods for PTF circuitry and is actively developing needed improvements or additions. These standards are described herein. Advantages of PTF circuitry over copper include: varied conductive material compositions, lower cost and lower environmental impact. Necessary improvements include: robust integration of chip and power, higher conductivity, and fine line multi-layer patterning.

Engineered Materials Systems, Inc.

Recommendations for Board Assembly of Infineon Thin Small Discrete Packages without Leads

Technical Library | 2021-04-01 14:36:51.0

This document provides information about the Surface Mount Technology (SMT) board assembly of Infineon Thin Small Non-leaded Packages (TSNP). The specific dimensions of the leadframe based inner setup depend on the size of the chip and the type of bonding. The field of application ranges from linear voltage regulators for weight-limited applications such as cellular phones and digital cameras to linear voltage regulators for the automotive sector.

Infineon Technologies AG

Side Wettable Flanks for Leadless Automotive Packaging

Technical Library | 2023-08-04 15:38:36.0

The MicroLeadFrame® (MLF®)/Quad Flat No-Lead (QFN) packaging solution is extremely popular in the semiconductor industry. It is used in applications ranging from consumer electronics and communications to those requiring high reliability performance, such as the automotive industry. The wide acceptance of this packaging design is primarily due to its flexible form factors, size, scalability and thermal dissipation capabilities. The adaptation and acceptance of MLF/QFN packages in automotive high reliability applications has led to the development of materials and processes that have extended its capabilities to meet the performance and quality requirements. One of process developments that is enabling the success of the MLF/QFN within the automotive industry has been the innovation of side wettable flanks that provide the capability to inspect the package lead to printed circuit board (PCB) interfaces for reliable solder joints. Traditionally, through-board X-ray was the accepted method for detecting reliable solder joints for leadless packages. However, as PBC layer counts and routing complexities have increased, this method to detect well-formed solder fillets has proven ineffective and incapable of meeting the inspection requirements. To support increased reliability and more accurate inspection of the leadless package solder joints, processes to form side-wettable flanks have been developed. These processes enable the formation of solder fillets that are detectable using state-of-the-art automated optical inspection (AOI) equipment, providing increased throughput for the surface mount technology (SMT) processes and improved quality as well.

Amkor Technology, Inc.

  1 2 3 Next

standard for leaded smt searches for Companies, Equipment, Machines, Suppliers & Information

KingFei SMT Tech
KingFei SMT Tech

Main Products: 1. Original new and Original Used SMT/AI Spare Parts. 2. SMT Equipments And Related Machine( SMT Calibration, SMT Feeder Carts,Conveyer etc.) 3. Maintenace and Repair Service Pre-Sales Service Provide details ab

Manufacturer's Representative / Manufacturer / Equipment Dealer / Broker / Auctions / Consultant / Service Provider

3 Road Xintang, Fuhai Street,Fuyong
Shenzhen, 30 China

Phone: 13713862102