Technical Library: statistical methods (Page 1 of 1)

Effect of Alloy and Flux System on High Reliability Automotive Applications

Technical Library | 2017-01-05 16:55:11.0

The July 2006 implementation of ROHS exempted automotive applications from converting to lead free technology. Nine years later, all major OEM and Tier 1 automotive manufacturers have converted or are in the process of converting to lead free circuit assembly processing. Starting with SAC (SnAgCu) alloys as a baseline for lead free soldering, in the last years several specific alloys were developed in order to improve resistance to high temperature creep, vibration survival and the ability to withstand thermal cycling and thermal shock.The paper compares three different solder alloys and two flux chemistries in terms of void formation and mechanical / thermal fatigue properties. Void content and reliability data of the alloys will be presented and discussed in relation to the acceptance criteria of a Tier 1 /OEM automotive supplier. As a result, a ranking list will be presented considering the combined performance of the alloys. In order to analyze the void formation and mechanical behavior of different solder alloys and flux chemistry combinations, statistical methods are used.

MacDermid Alpha Electronics Solutions

Robust Reliability Testing For Drop-on-Demand Jet Printing

Technical Library | 2020-03-19 00:23:15.0

In this study, the question was how to perform statistically reliable robust- ness tests for the non-contact drop-on-demand printing of functional fluids, such as solder paste and conductive adhesives. The goal of this study was to develop a general method for hypothesis testing when robustness tests are performed. The main problem was to determine if there was a statistical difference between two means or proportions of jet printing devices. In this study, an example of jetting quality variation was used when comparing two jet printing ejector types that differ slightly in design. We wanted to understand if the difference in ejector design can impact jetting quality by performing robustness tests. and thus answer the question, "Can jetting differences be seen between ejector design 1 and design 2"?

Mycronic AB

Optimizing Flip Chip Substrate Layout for Assembly

Technical Library | 2007-11-29 17:20:31.0

Programs have been developed to predict the expected yield of flip chip assemblies, based on substrate design and the statistics of actual manufactured boards, as well as placement machine accuracy, variations in bump sizes, and possible substrate warpage. These predictions and the trends they reveal can be used to direct changes in design so that defect levels will fall below the acceptable limits. Shapes of joints are calculated analytically, or when this is not possible, numerically by means of a public domain program called Surface Evolver. The method is illustrated with an example involving the substrate for a flip chip BGA.

Universal Instruments Corporation

True Height Measurement in Solder Paste Inspection

Technical Library | 2015-04-29 03:48:39.0

SPI equipment is routinely used in Printed Circuit Board (PCB) manufacturing to monitor and control one of the most crucial steps affecting the finished quality of circuit board. Solder paste deposition is the key process in board assembly operations using SMT techniques. Our LSM™ system was the industry's first popular method of manually inspecting solder paste; our SE systems revolutionized SMT production by offering an automated method for performing in-process 3D inspection on the assembly line. SPI systems measure the height and volume of the solder pads before the components are applied and the solder melted, and when used properly, can reduce the incidence of solder-related defects to statistically insignificant amounts. Critical to the SPI measurement is the accuracy of the height measurement because that has a direct correlation with solder volume and defects.

CyberOptics Corporation

To Quantify a Wetting Balance Curve

Technical Library | 2017-10-19 01:17:56.0

Wetting balance testing has been an industry standard for evaluating the solderability of surface finishes on printed circuit boards (PCB) for many years. A Wetting Balance Curve showing Force as a function of Time, along with the individual data outputs "Time to Zero" T(0), "Time to Two-Thirds Maximum Force" T(2/3), and "Maximum Force" F(max) are usually used to evaluate the solderability performance of various surface finishes. While a visual interpretation of the full curve is a quick way to compare various test results, this method is subjective and does not lend itself readily to a rigorous statistical evaluation. Therefore, very often, when a statistical evaluation is desired for comparing the solderability between different surface finishes or different test conditions, one of the individual parameters is chosen for convenience. However, focusing on a single output usually doesn't provide a complete picture of the solderability of the surface finish being evaluated.In this paper, various models here-in labeled as "point" and "area" models are generated using the three most commonly evaluated individual outputs T(0), T(2/3), and F(max). These models have been studied to quantify how well each describes the full wetting balance curve. The solderability score (S-Score) with ranking from 0 to 10 were given to quantify the wetting balance curve as the result of the model study, which corresponds well with experimental results.

Enthone

An Automatic Surface Defect Inspection System for Automobiles Using Machine Vision Methods

Technical Library | 2020-08-27 01:15:10.0

Automobile surface defects like scratches or dents occur during the process of manufacturing and cross-border transportation. This will affect consumers' first impression and the service life of the car itself. In most worldwide automobile industries, the inspection process is mainly performed by human vision, which is unstable and insufficient. The combination of artificial intelligence and the automobile industry shows promise nowadays. However, it is a challenge to inspect such defects in a computer system because of imbalanced illumination, specular highlight reflection, various reflection modes and limited defect features. This paper presents the design and implementation of a novel automatic inspection system (AIS) for automobile surface defects which are the located in or close to style lines, edges and handles. The system consists of image acquisition and image processing devices, operating in a closed environment and noncontact way with four LED light sources. Specifically, we use five plane-array Charge Coupled Device (CCD) cameras to collect images of the five sides of the automobile synchronously. Then the AIS extracts candidate defect regions from the vehicle body image by a multi-scale Hessian matrix fusion method. Finally, candidate defect regions are classified into pseudo-defects, dents and scratches by feature extraction (shape, size, statistics and divergence features) and a support vector machine algorithm. Experimental results demonstrate that automatic inspection system can effectively reduce false detection of pseudo-defects produced by image noise and achieve accuracies of 95.6% in dent defects and 97.1% in scratch defects, which is suitable for customs inspection of imported vehicles.

Nanjing University

  1  

statistical methods searches for Companies, Equipment, Machines, Suppliers & Information

IPC Training & Certification - Blackfox

Have you found a solution to REDUCE DISPENSE REWORK? Your answer is here.
Blackfox IPC Training & Certification

Reflow Soldering 101 Training Course
SMT feeders

Software for SMT placement & AOI - Free Download.
Win Source Online Electronic parts

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.
SMT spare parts

Low-cost, self-paced, online training on electronics manufacturing fundamentals