Technical Library | 2013-07-03 10:31:54.0
It has been demonstrated in numerous pieces of work that stencil printing, one of the most complex PCB assembly processes, is one of the largest contributors to defects (Revelino et el). This complexity extends to prototype builds where a small number of boards need to be assembled quickly and reliably. Stencil printing is becoming increasingly challenging as packages shrink in size, increase in lead count and require closer lead spacing (finer pitch). Prototype SMT assembly can be further divided between industrial and commercial work and the DIYer, hobbyist or researcher groups. This second group is highly price sensitive when it comes to the materials used for the board assembly as their funds are sourced from personal or research monies as opposed to company funds. This has led to development of a lower cost SMT printing stencil made from plastic film as opposed to the more traditional stainless steel stencil used by industrial and commercial users.This study compares the performance of these two traditional materials and their respective impact on solder paste printing including efficiency and print quality.
Technical Library | 2014-03-13 15:25:01.0
A student competition paper at Budapest University of Technology And Economics, Department of Electronics Technology gives background, covers stencil design and discusses stencils intended for pin in paste application. The stencil applied for depositing the solder paste is a thin, 75–200 µm thick metal foil, on which apertures are formed according to the solder pads on the printed circuit board. Stencil printing provides a fast, mass solder paste deposition process; relatively expensive, appropriate and recommended for mass production.
Technical Library | 2024-01-08 18:44:00.0
Printed circuit boards, especially multilayer, flexible and rigid-flexible printed circuit boards, are extremely hygroscopic, i.e. they absorb and bind the moisture in the air. A dried polyimide film, for example, will have reached its moisture saturation level again after just a few hours.
Technical Library | 2023-07-25 16:25:56.0
This paper address two significant applications of stencils in advance packaging field: 1. Ultra-Thin stencils for miniature component (0201m) assembly; 2. Deep Cavity stencils for embedded (open cavity) packaging. As the world of electronics continues to evolve with focus on smaller, lighter, faster, and feature-enhanced high- performing electronic products, so are the requirement for complex stencils to assemble such components. These stencil thicknesses start from less than 25um with apertures as small as 60um (or less). Step stencils are used when varying stencil thicknesses are required to print into cavities or on elevated surfaces or to provide relief for certain features on a board. In the early days of SMT assembly, step stencils were used to reduce the stencil thickness for 25 mil pitch leaded device apertures. Thick metal stencils that have both relief-etch pockets and reservoir step pockets are very useful for paste reservoir printing. Electroform Step-Up Stencils for ceramic BGA's and RF Shields are a good solution to achieve additional solder paste height on the pads of these components as well as providing exceptional paste transfer for smaller components like uBGAs and 0201s. As the components are getting smaller, for example 0201m, or as the available real estate for component placement on a board is getting smaller – finer is the aperture size and the pitch on the stencils. Aggressive distances from step wall to aperture are also required. Ultra-thin stencils with thicknesses in the order of 15um-40um with steps of 15um are used to obtain desired print volumes. Stencils with thickness to this order can be potential tools even to print for RDLs in the package.
Technical Library | 2009-09-09 15:08:19.0
Stencil printing equipment has traditionally been used in the surface mount assembly industry for solder paste printing. In recent years the flexibility of the tool has been exploited for a wide range of materials and processes to aid semiconductor packaging and assembly. One such application has been the deposition of adhesive coatings onto the backside of silicon wafers.
Technical Library | 2021-08-18 01:30:18.0
The interfacing of soft and hard electronics is a key challenge for flexible hybrid electronics. Currently, a multisubstrate approach is employed, where soft and hard devices are fabricated or assembled on separate substrates, and bonded or interfaced using connectors; this hinders the flexibility of the device and is prone to interconnect issues. Here, a single substrate interfacing approach is reported, where soft devices, i.e., sensors, are directly printed on Kapton polyimide substrates that are widely used for fabricating flexible printed circuit boards (FPCBs).
Technical Library | 2018-10-10 21:26:52.0
Printed electronics is a familiar term that is taking on more meaning as the technology matures. Flexible electronics is sometimes referred to as a subset of this and the printing approach is one of the enabling factors for roll to roll processes. Printed electronics is improving in performance and has many applications that compete directly with printed circuit boards. The advantage of roll to roll is the speed of manufacturing, the large areas possible, and a reduction in costs. As this technology continues to mature, it is also merging with the high profile 3D printing. (...)This paper will show working demonstrations of printed circuit structures, the obstacles, and the potential future of 3D printed electronics.
Technical Library | 2009-01-21 23:16:14.0
This paper describes a new approach to drying circuit board assemblies that significantly reduces the cost of ownership of an aqueous cleaning system. Drying performance is increased through a hybrid drying process that reduces energy input, exhaust requirements and sound levels. The combination of high temperature blow-off and convection brings the flexibility to tailor drying performance to fit the product's drying requirements.
Technical Library | 2008-03-18 12:36:31.0
This paper examines the construction of a notebook mainboard with more than 2000 components and no wave soldering required. The board contains standard SMD, chipset BGAs, connectors, through hole components and odd forms placed using full automation and soldered after two reflow cycles under critical process parameters. However, state of the art technology does not help if the process parameters are not set carefully. Can all complex BGAs, THTs and even screws be soldered on a single stencil? What will help us overcome bridging, insufficient solder and thombstoning issues? This paper will demonstrate the placement of all odd shape components using pin-in-paste stencil design and full completion of the motherboard after two reflow cycles.
Technical Library | 2014-12-24 19:22:52.0
For centuries, the squeegee blade has been used throughout many applications for depositing viscous materials through screens and stencils to transfer images on to substrates, from cloth material to electronic circuit boards. One area of blade printing mechanics that have been reviewed many times is the angle of attack of the blade. Typically it has been tested from 45 degrees to 60 degrees to optimize the printing quality and efficiency. However, this typically ends up as a compromise, from fill characteristics (45 degrees) to print definition (60 degrees). This paper will present the revolutionary performance of the profiled squeegee blade, which has recently been developed to create a virtual multi angle of attack for unsurpassed process control for all types of stencil printing processes.