Technical Library | 2013-03-12 13:25:18.0
High density and miniaturized circuit assemblies challenge the solder paste printing process. The use of small components such as 0201, 01005 and μBGA devices require good paste release to prevent solder paste bridging and misalignment. When placing these miniaturized components, taller paste deposits are often required. To improve solder paste deposition, a nano-coating is applied to laser cut stencils to improve transfer efficiency. One concern is the compatibility of the nano-coating with cleaning agents used in understencil wipe and stencil cleaning. The purpose of this research is to test the chemical compatibility of common cleaning agents used in understencil wipe and stencil cleaning processes.Compatibility of Cleaning Agents With Nano-Coated Stencils
Technical Library | 2022-08-17 01:21:54.0
Back in the "good old days," stencil cleaning was effortless and effective. CFC-based solvents were sprayed or wiped onto a stencil with apertures hundreds of times larger than modern-day components. The stencil cleaning process was not considered a value-added procedure; instead it was the cleaning of a production tool. How times have changed. The late-1980s ushered in the end of most of the popular solvents, and the machines that consumed them. Assemblers turned to alternative cleaning agents, including IPAs and other solvents.
Technical Library | 2023-05-22 17:46:29.0
Over the past several years, much research has been performed and published on the benefits of stencil nano-coatings and solvent under wipes. The process improvements are evident and well-documented in terms of higher print and end-of-line yields, in improved print volume repeatability, in extended under wipe intervals, and in photographs of the stencil's PCB-seating surface under both white and UV light. But quantifying the benefits using automated Solder Paste Inspection (SPI) methods has been elusive at best. SPI results using these process enhancements typically reveal slightly lower paste transfer efficiencies and less variation in print volumes to indicate crisper print definition. However, the improvements in volume data do not fully account for the overall improvements noted elsewhere in both research and in production.
Technical Library | 2014-06-05 16:44:07.0
Stencil printing capability is becoming more important as the range of component sizes assembled on a single board increases. Coupled with increased component density, solder paste sticking to the aperture sidewalls and bottom of the stencil can cause insufficient solder paste deposits and solder bridging. Yield improvement requires increased focus on stencil technology, printer capability, solder paste functionality and understencil cleaning.(...) The purpose of this research is to study the wipe sequence, wipe frequency and wipe solvent(s) and how these factors interact to provide solder paste printing yield improvement.
Technical Library | 2023-05-22 17:13:17.0
Agenda Overview Independent Testing & Studies-Print studies -Understencil Wipe studies-Durability Testing-Ongoing Studies NanoClear Product Information NanocoatingsComparison Summary Questions
Technical Library | 2019-03-13 15:19:55.0
It is well documented that Nano coatings on SMT stencils offer many benefits to those assembling PWBs. With reduced standard deviation and improved transfer efficiency nano coatings can provide, there is also a cost. As PWB assemblers work to justify the return on investment, one key question continues to arise. What is the durability or life of these coatings and what can be done in the print process to maximize the life of the coatings?This paper addresses durability of the coatings in relation to the number of print cycles and underside wipe cycles applied as well as materials used on the underside wipe process. Different parameters will be applied and data will be collected. The results of this study will be summarized to help those using or considering the use of these nano coatings to improve their print process and suggestions will be given to maximize the life of the coatings.
1 |