Technical Library: stimulators (Page 1 of 1)

Novel Pogo-Pin Socket Design for Automated Low Signal Linearity Testing of CT Detector Sensor

Technical Library | 2019-01-30 21:20:47.0

Due to the arrayed nature of the Computed Tomography (CT) Detector, high density area array interconnect solutions are critical to the functionality of the CT detector module. Specifically, the detector module sensor element, hereby known as the Multi-chip module (MCM), has a 544 position BGA area array pattern that requires precise test stimulation. A novel pogo-pin block array and corresponding motorized test socket has been designed to stimulate the MCM and acquire full functional test data. (...) This paper and presentation will focus on the socket design challenges and also key learnings from the design that can be applied to general test systems, including reliability testing. The secondary focus will be on the overall data collection and graphical user interface for the test equipment.

General Electric

Void Reduction in Reflow Soldering Processes by Sweep Stimulation of PCB Substrate

Technical Library | 2017-11-08 23:22:04.0

Due to the ongoing trend towards miniaturization of power components, the need for increased thermal conductivity of solder joints in SMT processes gains more and more importance. Therefore, the role of void free solder joints in power electronics becomes more central. Voids developed during soldering reduce the actual thermal transfer and can cause thermal damage of the power components up to their failure. For this reason, the company has developed a new technique to minimize the formation of these voids during the soldering process.

kurtz ersa Corporation

A Novel Method for the Fabrication of a High-Density Carbon Nanotube Microelectrode Array

Technical Library | 2016-11-03 17:53:56.0

We present a novel method for fabricating a high-density carbon nanotube microelectrode array (MEA) chip. Vertically aligned carbon nanotubes (VACNTs) were synthesized by microwave plasma-enhanced chemical vapor deposition and thermal chemical vapor deposition. The device was characterized using electrochemical experiments such as cyclic voltammetry, impedance spectroscopy and potential transient measurements. Through-silicon vias (TSVs) were fabricated and partially filled with polycrystalline silicon to allow electrical connection from the high-density electrodes to a stimulator microchip.In response to the demand for higher resolution implants, we have developed a unique process to obtain a high-density electrode array by making the microelectrodes smaller in size and designing new ways of routing the electrodes to current sources.

Hong Kong University of Science

Flexible Bioelectronics For Physiological Signals Sensing And Disease Treatment

Technical Library | 2020-04-22 23:50:30.0

Flexible bioelectronics, including wearable and implantable electronics, have revolutionized the way of human-machine interaction due to the fact that they can provide natural and seamless interactions with humans and keep stable and durable at strained states. As sensor elements or biomimetic actuators, flexible bioelectronics can dynamically sense and monitor physiological signals, reveal real-time physical health information and provide timely precise stimulations or treatments. Thus, the flexible bioelectronics are playing increasingly important roles in human-health monitoring and disease treatment, which will significantly change the future of healthcare as well as our relationships with electronics. This review summarizes recent major progress in the development of flexible substrates or encapsulation materials, sensors, circuits and energy-autonomous powers toward digital healthcare monitoring, emphasizing its role in biomedical applications in vivo and problems in practical applications. A future perspective into the challenges and opportunities in emerging flexible bioelectronics designs for the next-generation healthcare monitoring systems is also presented.

University of Electronic Science and Technology of China

Soldering Immersion Tin

Technical Library | 2019-04-10 22:08:31.0

The stimulating impact of the automotive industry has sharpened focus on immersion tin (i-Sn) more than ever before. Immersion tin with its associated attributes, is well placed to fulfill the requirements of such a demanding application. In an environment dominated by reliability, the automotive market not only has very stringent specifications but also demands thorough qualification protocols. Qualification is ultimately a costly exercise. The good news is that i-Sn is already qualified by many tier one OSATs. The focus of this paper is to generate awareness of the key factors attributed to soldering i-Sn. Immersion tin is not suitable for wire bonding but ultimately suited for multiple soldering applications. The dominant topics of this paper will be IMC formations in relation to reflow cycles and the associated solderability performance. Under contamination free conditions, i-Sn can provide a solderable finish even after multiple reflow cycles. The reflow conditions employed in this paper are typical for lead free soldering environments and the i-Sn thicknesses are approximately 1 μm.

Atotech

  1  

stimulators searches for Companies, Equipment, Machines, Suppliers & Information