Technical Library: stress test (Page 1 of 3)

Investigation of Through-Hole Capacitor Parts Failures Following Vibration and Stress Testing

Technical Library | 2019-06-21 10:39:15.0

Recently, an ACI Technologies (ACI) customer called to discuss failures that they had observed with some through-hole capacitor parts. The components were experiencing failures following vibration and accelerated stress testing. Upon receipt of the samples, ACI performed three levels of inspection and Energy Dispersive Spectroscopy (EDS) testing to investigate the root cause of the failures. These analyses enabled ACI to verify the elements comprising the solder joints and make the following recommendations in order to prevent future occurrences. The first inspection was to investigate the capacitor leads using optical microscopy, and no anomalies were found that could indicate bad parts from the vendor or improper handling prior to assembly. However, vertical fill in the barrel of the plated through-holes was too close to the IPC-A-610 minimum specification of 75% to determine a pass/fail condition, and therefore required further investigation.

ACI Technologies, Inc.

SMT Component Reliability for RF Applications

Technical Library | 2019-05-31 14:19:24.0

ACI Technologies (ACI) characterized the reliability of surface mount RF components. The RF frequency band of interest was the X band (10.7 to 11.7GHz). A two pronged test for reliability of circuit card assemblies (CCA) was designed for both extreme thermal cycling and vibration. The rapid thermal cycling and extreme vibration testing simulates the total stress encountered by the assembly over the life of the product but accomplishes it in a relatively short period of time. In order to perform the reliability testing, a test vehicle consisting of a printed circuit board with test structures and components, was designed, fabricated, and assembled at ACI.

ACI Technologies, Inc.

Thermal Interface Materials Testing

Technical Library | 2019-05-30 11:04:03.0

There exists a need to efficiently remove heat from power electronics within power systems to enhance performance. Thermal management is a critical function to that operation. Reducing the junction temperature of semiconductor power electronic devices enables them to operate at higher currents. Lowering operating temperatures reduces the thermal stress on electronic devices, which improves efficiency and reduces failures. To improve the heat removal process, the current heat transfer design of a power system has been analyzed and a variety of thermal interface materials (TIMs) and cold plate technologies have been evaluated. This paper will review some of these results.

ACI Technologies, Inc.

Mechanical stress test for component solder joints and bonding wires

Technical Library | 2016-08-24 06:15:35.0

From consumer electronics to systems control, automotive technology to aviation and aerospace – today, electronics are absolutely essential in many sectors. They increasingly replace mechanical components, eliminating wear and tear and thereby extending the service life. What is easily forgotten in this regard is that electronics are also subject to the laws of mechanics. Mechanical test equipment is crucial to test components for the secure hold of welded, soldered or adhesive bonds. A new, mechanically intricate test probe with universal clamping jaws, that can even grasp the individual bonding wires, is in line with the trend toward ever smaller components. Serving as an actuator for these is a micro drive that can be precisely controlled using a miniaturised motion controller to relieve the control unit in the test device.

XYZTEC bv

Improvement of Organic Packaging Thermal Cycle Performance Measurement

Technical Library | 2006-11-01 22:37:23.0

Flip Chip Plastic Ball Grid Array (FCPBGA) modules, when subjected to extreme environmental stress testing, may often reveal mechanical and electrical failure mechanisms which may not project to the field application environment. One such test can be the Deep Thermal Cycle (DTC) environmental stress which cycles from -55°C to 125°C. This “hammer” test provides the customer with a level of security for robustness, but does not typically represent conditions which a module is likely to experience during normal handling and operation.

IBM Corporation

Review of Interconnect Stress Testing Protocols and Their Effectiveness in Screening Microvias

Technical Library | 2016-11-30 15:53:15.0

The use of microvias in Printed Circuit Boards (PCBs) for military hardware is increasing as technology drives us toward smaller pitches and denser circuitry. Along with the changes in technology, the industry has changed and captive manufacturing lines are few and far between. As PCBs get more complicated, the testing we perform to verify the material was manufactured to our requirements before they are used in an assembly needs to be reviewed to ensure that it is sufficient for the technology and meets industry needs to better screen for long-term reliability. The Interconnect Stress Testing (IST) protocol currently used to identify manufacturing issues in plated through holes, blind, or buried vias are not necessarily sufficient to identify problems with microvias. There is a need to review the current IST protocol to determine if it is adequate for finding bad microvias or if there is a more reliable test that will screen out manufacturing inconsistencies. The objective of this research is to analyze a large population of PCB IST coupons to determine if there is a more effective IST test to find less reliable microvias in electrically passing PCB product and to screen for manufacturing deficiencies. The proposed IST test procedure will be supported with visual inspection of corresponding microvia cross sections and Printed Wiring Assembly (PWA) acceptance test results. The proposed screening will be shown to only slightly affect PCB yield while showing a large benefit to screening before PCBs are used in an assembly.

Raytheon

Optimized Stress Testing for Flexible Hybrid Electronics Designs

Technical Library | 2020-10-08 01:01:01.0

Flexible hybrid electronics (FHE) is emerging as a promising solution to combine the benefits of printed electronics and silicon technology. FHE has many high-impact potential areas, such as wearable applications, health monitoring, and soft robotics, due to its physical advantages, which include light weight, low cost and the ability conform to different shapes. However, physical deformations in the field can lead to significant testing and validation challenges. For example, designers must ensure that FHE devices continue to meet their specs even when the components experience stress due to bending. Hence, physical deformation, which is hard to emulate, has to be part of the test procedures for FHE devices. This paper is the first to analyze stress experience at different parts of FHE devices under different bending conditions. We develop a novel methodology to maximize the test coverage with minimum number of text vectors with the help of a mixed integer linear programming formulation. We validate the proposed approach using an FHE prototype and COMSOL Multiphysics simulations

Arizona State University

A Study on Effects of Copper Wrap Specifications on Printed Circuit Board Reliability

Technical Library | 2021-07-20 20:02:29.0

During the manufacturing of printed circuit boards (PCBs) for a Flight Project, it was found that a European manufacturer was building its boards to a European standard that had no requirement for copper wrap on the vias. The amount of copper wrap that was measured on coupons from the panel containing the boards of interest was less than the amount specified in IPC-6012 Rev B, Class 3. To help determine the reliability and usability of the boards, three sets of tests and a simulation were run. The test results, along with results of simulation and destructive physical analysis, are presented in this paper. The first experiment involved subjecting coupons from the panels supplied by the European manufacturer to thermal cycling. After 17 000 cycles, the test was stopped with no failures. A second set of accelerated tests involved comparing the thermal fatigue life of test samples made from FR4 and polyimide with varying amounts of copper wrap. Again, the testing did not reveal any failures. The third test involved using interconnect stress test coupons with through-hole vias and blind vias that were subjected to elevated temperatures to accelerate fatigue failures. While there were failures, as expected, the failures were at barrel cracks. In addition to the experiments, this paper also discusses the results of finite-element analysis using simulation software that was used to model plated-through holes under thermal stress using a steady-state analysis, also showing the main failure mode was barrel cracking. The tests show that although copper wrap was sought as a better alternative to butt joints between barrel plating and copper foil layers, manufacturability remains challenging and attempts to meet the requirements often result in features that reduce the reliability of the boards. Experimental and simulation work discussed in this paper indicate that the standard requirements for copper wrap are not contributing to the overall board reliability, although it should be added that a design with a butt joint is going to be a higher risk than a reduced copper wrap design. The study further shows that procurement requirements for wrap plating thickness from Class 3 to Class 2 would pose little risk to reliability (minimum 5 μm/0.197 mil for all via types).Experimental results corroborated by modeling indicate that the stress maxima are internal to the barrels rather than at the wrap location. In fact, the existence of Cu wrap was determined to have no appreciable effect on reliability.

NASA Office Of Safety And Mission Assurance

Cracking Problems in Low-Voltage Chip Ceramic Capacitors

Technical Library | 2022-09-25 20:03:37.0

Cracking remains the major reason of failures in multilayer ceramic capacitors (MLCCs) used in space electronics. Due to a tight quality control of space-grade components, the probability that as manufactured capacitors have cracks is relatively low, and cracking is often occurs during assembly, handling and the following testing of the systems. Majority of capacitors with cracks are revealed during the integration and testing period, but although extremely rarely, defective parts remain undetected and result in failures during the mission. Manual soldering and rework that are often used during low volume production of circuit boards for space aggravate this situation. Although failures of MLCCs are often attributed to the post-manufacturing stresses, in many cases they are due to a combination of certain deviations in the manufacturing processes that result in hidden defects in the parts and excessive stresses during assembly and use. This report gives an overview of design, manufacturing and testing processes of MLCCs focusing on elements related to cracking problems. The existing and new screening and qualification procedures and techniques are briefly described and assessed by their effectiveness in revealing cracks. The capability of different test methods to simulate stresses resulting in cracking, mechanisms of failures in capacitors with cracks, and possible methods of selecting capacitors the most robust to manual soldering stresses are discussed.

NASA Office Of Safety And Mission Assurance

Head-in-Pillow BGA Defects

Technical Library | 2009-11-05 11:17:32.0

Head-in-pillow (HiP), also known as ball-and-socket, is a solder joint defect where the solder paste deposit wets the pad, but does not fully wet the ball. This results in a solder joint with enough of a connection to have electrical integrity, but lacking sufficient mechanical strength. Due to the lack of solder joint strength, these components may fail with very little mechanical or thermal stress. This potentially costly defect is not usually detected in functional testing, and only shows up as a failure in the field after the assembly has been exposed to some physical or thermal stress.

AIM Solder

  1 2 3 Next

stress test searches for Companies, Equipment, Machines, Suppliers & Information