Technical Library | 1999-05-07 10:20:34.0
Media (video, audio, graphics, communication) applications present a unique opportunity for performance boost via use of Single Instruction Multiple Data (SIMD) techniques. While several of the computeintensive parts of media applications benefit from SIMD techniques, a significant portion of the code still is best suited for general purpose instruction set architectures. MMX™ technology extends the Intel Architecture (IA), the industry's leading general purpose processor architecture, to provide the benefits of SIMD for media applications.
Technical Library | 2019-04-04 15:39:49.0
Siemens announced today the introduction of Camstar™ Electronics Suite software, an innovative manufacturing execution system (MES) for electronics. Building on the successful enterprise-level platform for integrated circuit (IC) manufacturing, this powerful, configurable and scalable MES solution enables printed circuit board (PCB) and box assemblers to meet traceability requirements, improve efficiency levels and control manufacturing operations through direct Internet of Things (IoT) connectivity with machines and production lines.
Technical Library | 2021-11-16 22:17:27.0
Ultrasonics, coupled with an aqueous detergent process that cleans at below 43ºC, may be best suited for fine-pitch SMT screens and stencils. Aqueous detergents clean more effectively than solvents, with little or no environmental impact. Because of the environmental concerns driving today's technology decisions, the once simple decision of selecting a stencil cleaning process is now clouded with different chemicals, different cleaning machines and various types of solder paste, all with specific environmental, health and safety related issues and regulations.
Technical Library | 2015-08-20 15:51:08.0
Temperature and Humidity on Selective Conformal Coating It is well known that selective conformal coating on printed circuit board (PCB) assemblies provides unparallel protection for PCB’s. Nevertheless, concentrated conditions of humidity, water, and high temperatures can have negative effects on the conformal coating itself causing it to fail and become inapt for its intended purpose. Taking this into consideration, it is prudent to choose the right type of conformal coating that best suits the application and environmental conditions under which an assembly is likely to undergo in use. The proper conformal coating will significantly reduce the likelihood of failure/rejection, saving both valuable time and money for any manufacturing process.
Technical Library | 2013-05-16 15:52:00.0
In response to a growing concern within the Electronic Industry to the transition to Halogen-Free laminates (HFR-Free) within the Client Market space (Desktop and Notebook computers) iNEMI initiated a HFR-Free Leadership Workgroup to evaluate the readiness of the Industry to make this transition. The HFR-Free Leadership WG concluded that the electronic industry is ready for the transition and that the key electrical and thermo-mechanical properties of the new HFR-Free laminates can meet the required criteria. The HFR-Free Leadership WG verified that the laminate suppliers can meet the capacity demands for these new HFR-Free laminates and developed a "Test Suite Methodology" (TSM) that can facilitate the comparison and choice of the right laminate to replace brominated FR4 in the Client space... First published in the 2012 IPC APEX EXPO technical conference proceedings.
Technical Library | 2018-06-13 11:42:00.0
The art of screen printing solder paste for the surface mount community has been discussed and presented for several decades. However, the impending introduction of passive Metric 0201 devices has reopened the need to re-evaluate the printing process and the influence of stencil architecture. The impact of introducing apertures with architectural dimensions’ sub 150um whilst accommodating the requirements of the standard suite of surface mount connectors, passives and integrated circuits will require a greater knowledge of the solder paste printing process.The dilemma of including the next generation of surface mount devices into this new heterogeneous environment will create area ratio challenges that fall below todays 0.5 threshold. Within this paper the issues of printing challenging area ratio and their associated aspect ratio will be investigated. The findings will be considered against the next generation of surface mount devices.
Technical Library | 2019-04-10 22:08:31.0
The stimulating impact of the automotive industry has sharpened focus on immersion tin (i-Sn) more than ever before. Immersion tin with its associated attributes, is well placed to fulfill the requirements of such a demanding application. In an environment dominated by reliability, the automotive market not only has very stringent specifications but also demands thorough qualification protocols. Qualification is ultimately a costly exercise. The good news is that i-Sn is already qualified by many tier one OSATs. The focus of this paper is to generate awareness of the key factors attributed to soldering i-Sn. Immersion tin is not suitable for wire bonding but ultimately suited for multiple soldering applications. The dominant topics of this paper will be IMC formations in relation to reflow cycles and the associated solderability performance. Under contamination free conditions, i-Sn can provide a solderable finish even after multiple reflow cycles. The reflow conditions employed in this paper are typical for lead free soldering environments and the i-Sn thicknesses are approximately 1 μm.
Technical Library | 2016-07-14 18:21:29.0
Printed Circuit Boards (PCBs) and Printed Electronics (PE) both describe conductor/substrate combinations that make connections. Both PCB and PE technologies have been in use for a long time in one form or another with PCBs currently the standard for complex, high speed electronics and PE for user interface, complex form factor or other film based applications. New and innovative applications create the opportunity for promising structures. Taking advantage of the PCB shop's capability as well as the material set can help create these structures and indeed PE materials can find use in more traditional PCBs. New materials and new uses of existing materials open up many possibilities in electronic interconnecting structures. PCB manufacturers have a complex manufacturing infrastructure, well suited for both additive and subtractive conductor processing. While built around rigid material processing (flex PCB being the exception), there are opportunities for PE substrate processing. As electronics devices are applied to more and more parts of our lives, we need to continually push for better solutions. Fit, function, manufacturability, and cost are all important considerations. Crossing the PCB/PE boundary is a way to meet the challenge.
Technical Library | 2020-03-26 14:55:29.0
This paper introduces line confocal technology that was recently developed to characterize 3D features of various surface and material types at sub-micron resolution. It enables automatic microtopographic 3D imaging of challenging objects that are difficult or impossible to scan with traditional methods, such as machine vision or laser triangulation.Examples of well-suited applications for line confocal technology include glossy, mirror-like, transparent and multi-layered surfaces made of metals (connector pins, conductor traces, solder bumps etc.), polymers (adhesives, enclosures, coatings, etc.), ceramics (components, substrates, etc.) and glass (display panels, etc.). Line confocal sensors operate at high speed and can be used to scan fast-moving surfaces in real-time as well as stationary product samples in the laboratory. The operational principle of the line confocal method and its strengths and limitations are discussed.Three metrology applications for the technology in electronics product manufacturing are examined: 1. 3D imaging of etched PCBs for micro-etched copper surface roughness and cross-sectional profile and width of etched traces/pads. 2. Thickness, width and surface roughness measurement of conductive ink features and substrates in printed electronics applications. 3. 3D imaging of adhesive dots and lines for shape, dimensions and volume in PCB and product assembly applications.
Technical Library | 2022-12-19 18:59:51.0
Material and Process Characterization studies can be used to quantify the harmful effects that might arise from solder flux and other process residues left on external surfaces after soldering. Residues present on an electronic assembly can cause unwanted electrochemical reactions leading to intermittent performance and total failure. Components with terminations that extend underneath the package can trap flux residue. These bottom terminated components are flush with the bottom of the device and can have small solderable terminations located along the perimeter sides of the package. The clearance between power and ground render high electrical forces, which can propagate electrochemical interactions when exposed to atmospheric moisture (harsh environments). The purpose of this research is to predict and understand the functional performance of residues present under single row QFN component packages. The objective of the research study is to develop and collect a set of guidelines for understanding the relationship between ionic contamination and electrical performance of a BTC component when exposed to atmospheric moisture and the trade-offs between electrical, ionic contamination levels, and cleanliness. Utilizing the knowledge gained from undertaking the testing of QFN components and associated DOE, the team will establish a reference Test Suite and Test Spec for cleanliness.