Technical Library | 2023-01-17 17:37:45.0
Various international market trends drive electronics manufacturers and their mate- rials and equipment suppliers to develop new assembly techniques to reduce the industry's environmental impact. Two pri- mary forces in this drive are the movements to lead-free assembly and ISO 14000 cer- tification. In response to these factors, reflow technology advances are enabling manufacturers to meet or anticipate the new environmental mandates.
Technical Library | 2018-08-03 14:37:59.0
In the electronics industry, the quality and reliability of any product is highly dependent upon the capabilities of the manufacturing suppliers. Manufacturing defects are one of the top reasons why companies fail to meet warranty expectations. These problems can result in severe financial pain and eventual loss of market share. What a surprising number of engineers and managers fail to realize is that focusing on processes addresses only part of the issue. Supplier selection also plays a critical role in the success or failure of the final product.
Technical Library | 2008-06-04 16:10:47.0
The convergence of a wide range of global influences is having a profound effect on current-day quality in manufacturing. Today's operational strategies must take into account business cycles, risk-based management, logistics, workflows, outsourcing, regulatory issues, product development, corporate mergers and acquisitions. In this ever-changing economy it is imperative that companies compete more effectively on two fronts: by reducing costs and emphasizing quality.
Technical Library | 1999-08-05 10:45:36.0
In 1998, the International 300 mm Initiative (I300I) demonstration and characterization programs will focus on 180 nm technology capability. To support these activities, I300I and equipment supplier demonstration partners must use starting silicon wafers with key parameters specified at a level appropriate level for 180 nm processing, including contamination and lithographic patterning. This document describes I300I's silicon wafer specifications, as developed with the I300I Silicon Working Group (member company technical advisors) and SEMI Standards.
Technical Library | 2017-02-23 17:23:16.0
Managing the environmental performance of products is an increasingly complicated challenge for manufacturers today. These companies face a complex tangle of requirements and mandates from regulators, consumers and customers to manage the toxicity, recycleability and overall environmental impact of their products. Not only have governments, business-to-business customers and consumers demonstrated a clear preference for better environmentally performing and "greener" brands, but investors are now pressuring manufacturers, as well. For example, the Dow Jones Sustainability Index identifies and tracks leading sustainability-driven companies around the world. This paper focuses on the challenges companies face and the best practices they can employ when collecting substance, material and compliance data from their suppliers and supply chain.
Technical Library | 2023-11-20 17:42:33.0
Zero-defect strategies and increased demands on the production of assemblies are making quality assurance in electronics production increasingly important. Continous miniaturization of components, ever higher packing densities and the associated hard-to-view assembly areas, as well as the increased use of components such as BGAs, QFNs and QFPs, pose a considerable challenge when it comes to high-precision quality control.
Technical Library | 2015-09-17 17:36:56.0
RoHS legislated restrictions on the materials used in electronics manufacture have imparted significant challenges on the electronics industry since their introduction in 2006. The greatest impacts have been felt by the mandated elimination of lead from electronic solder followed by the demand for the elimination of haloids from flame retardants used in traditional PCB laminates. In the years which have followed the electronics industry has been beset with a host of new challenges in its effort to comply. Failure mechanisms, both new and old, have surfaced which demand solution and the industry suppliers and manufacturing technologists have worked diligently to remedy those vexing faults through the development of a wide range of new materials and equipment for both board manufacture and assembly, along with modifications to the processes used in the manufacture and assembly of printed circuit boards.
Technical Library | 2019-08-07 22:56:45.0
The requirement to reconsider traditional soldering methods is becoming more relevant as the demand for bottom terminated components (QFN/BTC) increases. Thermal pads under said components are designed to enhance the thermal and electrical performance of the component and ultimately allow the component to run more efficiently. Additionally, low voiding is important in decreasing the current path of the circuit to maximize high speed and RF performances. The demand to develop smaller, more reliable, packages has seen voiding requirements decrease below 15 percent and in some instances, below 10 percent.Earlier work has demonstrated the use of micro-fluxed solder preforms as a mechanism to reduce voiding. The current work builds upon these results to focus on developing an engineered approach to void reduction in leadless components (QFN) through increasing understanding of how processing parameters and a use of custom designed micro-fluxed preforms interact. Leveraging the use of a micro-fluxed solder preform in conjunction with low voiding solder paste, stencil design, and application knowhow are critical factors in determining voiding in QFN packages. The study presented seeks to understand the vectors that can contribute to voiding such as PCB pad finish, reflow profile, reflow atmosphere, via configuration, and ultimately solder design.A collaboration between three companies consisting of solder materials supplier, a power semiconductor supplier, and an electronic assembly manufacturer worked together for an in-depth study into the effectiveness of solder preforms at reducing voiding under some of the most prevalent bottom terminated components packages. The effects of factors such as thermal pad size, finish on PCB, preform types, stencil design, reflow profile and atmosphere, have been evaluated using lead-free SAC305 low voiding solder paste and micro-fluxed preforms. Design and manufacturing rules developed from this work will be discussed.
1 |