Technical Library: surface area of a pcb (Page 1 of 4)

Investigation of PCB Failure after SMT Manufacturing Process

Technical Library | 2019-10-21 09:58:50.0

An ACI Technologies customer inquired regarding printed circuit board(PCB) failures that were becoming increasingly prevalent after the SMT (surface mount technology) manufacturing process. The failures were detected by electrical testing, but were undetermined as to the location and specific devices causing the failures. The failures were suspected to be caused predominately in the BGA (ball grid array) devices located on specific sites on this 16 layer construction. Information that was provided on the nature of the failures (i.e., opens or shorts) included high resistance shorts that were occurring in those specified areas. The surface finish was a eutectic HASL (hot air solder leveling) and the solder paste used was a water soluble Sn/Pb(tin/lead).

ACI Technologies, Inc.

Advanced Packaging of SMT Assemblies for Greater Cost Reduction

Technical Library | 2019-06-06 13:40:47.0

Legacy electronics assemblies, such as through-hole (Figure 1) and connectorized component packages, are robust and prevalent throughout industry. However, each of these assembly methods have reached their limits in terms of weight, volume, reliability, and most importantly cost. With cost reduction of assemblies now the primary focus area throughout the electronics industry, there is more of a need than ever to implement the latest advancements in surface mount technology (SMT) into electronics assembly designs. Although SMT has been utilized in the electronics industry for many years, implementation of the technology is still in the ever-evolving process of reducing component footprint size, component spacing, and component I/O pitch. Implementation of the most up-to-date SMT processes provides optimal weight, volume, and cost savings, for any type of assembly.

ACI Technologies, Inc.

Selective Solder Fine Pitch Components On High Thermal Mass Assembly

Technical Library | 2020-04-14 15:49:38.0

The number of through-hole components on printed circuit boards (PCB) has declined significantly over the last decade. Miniaturization in electronics has resulted in less THT (through-hole technology) and leads with a finer pitch. For this reason, the soldering of these components has also changed from wave soldering to Point-to-point selective soldering. Soldering these small, fine-pitch components is a challenge when surface mount components (SMD) are positioned very close to THT components on the PCB layout. This study, done in cooperation with a large automotive EMS customer, defines the process windows for through-hole technology for fine-pitch components. It determines what is feasible to solder and defines layout design parameter that make soldering possible with SMD areas and other components on the assembly.

ITW EAE

Cleaning No-Clean Fluxes Prior to Conformal Coating

Technical Library | 2020-03-09 10:50:17.0

A customer called the Helpline seeking advice for cleaning no-clean fluxes prior to applying a conformal coating. The customer's assemblies were manufactured with a no-clean rosin based solder paste (ROL0) and were cleaned with an isopropyl alcohol (IPA) wash. After cleaning, a white residue was sometimes found in areas with high paste concentrations and was interfering with the adhesion of the conformal coating (Figure 1). For conformal coatings to adhere properly, the printed circuit board (PCB) surface must be clean of fluxes and other residues. In addition, ionic contamination left by flux residues can lead to corrosion and dendrite growth, two common causes of electronic opens and shorts. Other residues can lead to unwanted impedance and physical interference with moving parts.

ACI Technologies, Inc.

Understanding The Crucial Role Of Dust Collectors In PCB Depaneling Machines

Technical Library | 2023-11-20 09:56:38.0

Understanding The Crucial Role Of Dust Collectors In PCB Depaneling Machines Precision is paramount in PCB manufacturing, but it must go hand in hand with cleanliness. The intrusion of dust and debris can wreak havoc on delicate electronics. This article explores the pivotal role of dust collectors, their operation, and their necessity for various PCB depaneling machines. The Dust Collector's Crucial Function Dust collectors, also known as dust extractors, play an indispensable role in PCB manufacturing. When a PCB depaneling machine or a Laser PCB Depaneling machine is in operation, it generates a significant amount of dust. The dust collector promptly engages its vacuum motor to suction fine particles off the PCB, directing them to a collector equipped with a filtration system. Which Models Of PCB Depanelers Require Dust Collector? Several PCB depaneling machines necessitate dust collectors to ensure precision and cleanliness, including: I.C.T-5700 Offline Depaneling Machine, high precision, easy manual operation, dual platform, high efficiency. I.C.T-IR350 In-line depaneling machine, high precision, rapid operation, suitable for integration into the SMT production line for Industry 4.0 and AI automated production. I.C.T-LCO350 Laser cutting ensures cutting accuracy of 0.002, ideal for precise cutting requirements. I.C.T-100A Desktop PCB depaneling machine with compact size and high precision, suitable for smaller-scale operations. The Science Behind PCB Dust Collectors To prevent charged dust particles from adhering to PCBs, PCB depaneling machines are equipped with ionizing guns. These devices emit ions that neutralize static charges, making dust particles less likely to stick to freshly cut PCBs. The Vacuum Effect: Suctioning Away Dust During PCB depaneling, a cloud of dust is produced. The dust collector utilizes a robust suction system, often powered by vacuum motors, to draw dust away from the work area. Collected dust is transported to a designated collection point within the dust collector. A Difference In Design: I.C.T-5700 Vs. I.C.T-IR350 The placement of the dust collection apparatus distinguishes PCB depaneling machines. I.C.T-5700 has a bottom-mounted system capturing falling dust, while I.C.T-IR350 features a top-mounted system preventing dust settling on the work surface. This strategic difference ensures efficient removal of dust and debris, guaranteeing a clean and precise manufacturing process. Check: If you want to learn about the comparison of I.C.T-5700 and I.C.T-IR350. The Importance Of Filter Replacement The efficiency of a dust collector relies on its filter, necessitating periodic replacement every 1-3 years, depending on usage frequency. Regular filter maintenance ensures optimal performance. Dust Collectors: Keep Your PCB Manufacturing Clean And Precise Precision in PCB manufacturing is not solely about cutting-edge machinery but also about cleanliness. If you seek a dust collector for your PCB depaneling machine, contact us today to explore your options. Ensure your operations maintain cleanliness, efficiency, and meet the high standards of modern PCB manufacturing. Don't let dust compromise your precision – let's keep it clean together!

I.C.T ( Dongguan Intercontinental Technology Co., Ltd. )

Understanding The Crucial Role Of Dust Collectors In PCB Depaneling Machines

Technical Library | 2023-11-20 09:56:42.0

Understanding The Crucial Role Of Dust Collectors In PCB Depaneling Machines Precision is paramount in PCB manufacturing, but it must go hand in hand with cleanliness. The intrusion of dust and debris can wreak havoc on delicate electronics. This article explores the pivotal role of dust collectors, their operation, and their necessity for various PCB depaneling machines. The Dust Collector's Crucial Function Dust collectors, also known as dust extractors, play an indispensable role in PCB manufacturing. When a PCB depaneling machine or a Laser PCB Depaneling machine is in operation, it generates a significant amount of dust. The dust collector promptly engages its vacuum motor to suction fine particles off the PCB, directing them to a collector equipped with a filtration system. Which Models Of PCB Depanelers Require Dust Collector? Several PCB depaneling machines necessitate dust collectors to ensure precision and cleanliness, including: I.C.T-5700 Offline Depaneling Machine, high precision, easy manual operation, dual platform, high efficiency. I.C.T-IR350 In-line depaneling machine, high precision, rapid operation, suitable for integration into the SMT production line for Industry 4.0 and AI automated production. I.C.T-LCO350 Laser cutting ensures cutting accuracy of 0.002, ideal for precise cutting requirements. I.C.T-100A Desktop PCB depaneling machine with compact size and high precision, suitable for smaller-scale operations. The Science Behind PCB Dust Collectors To prevent charged dust particles from adhering to PCBs, PCB depaneling machines are equipped with ionizing guns. These devices emit ions that neutralize static charges, making dust particles less likely to stick to freshly cut PCBs. The Vacuum Effect: Suctioning Away Dust During PCB depaneling, a cloud of dust is produced. The dust collector utilizes a robust suction system, often powered by vacuum motors, to draw dust away from the work area. Collected dust is transported to a designated collection point within the dust collector. A Difference In Design: I.C.T-5700 Vs. I.C.T-IR350 The placement of the dust collection apparatus distinguishes PCB depaneling machines. I.C.T-5700 has a bottom-mounted system capturing falling dust, while I.C.T-IR350 features a top-mounted system preventing dust settling on the work surface. This strategic difference ensures efficient removal of dust and debris, guaranteeing a clean and precise manufacturing process. Check: If you want to learn about the comparison of I.C.T-5700 and I.C.T-IR350. The Importance Of Filter Replacement The efficiency of a dust collector relies on its filter, necessitating periodic replacement every 1-3 years, depending on usage frequency. Regular filter maintenance ensures optimal performance. Dust Collectors: Keep Your PCB Manufacturing Clean And Precise Precision in PCB manufacturing is not solely about cutting-edge machinery but also about cleanliness. If you seek a dust collector for your PCB depaneling machine, contact us today to explore your options. Ensure your operations maintain cleanliness, efficiency, and meet the high standards of modern PCB manufacturing. Don't let dust compromise your precision – let's keep it clean together!

I.C.T ( Dongguan Intercontinental Technology Co., Ltd. )

To Quantify a Wetting Balance Curve

Technical Library | 2017-10-19 01:17:56.0

Wetting balance testing has been an industry standard for evaluating the solderability of surface finishes on printed circuit boards (PCB) for many years. A Wetting Balance Curve showing Force as a function of Time, along with the individual data outputs "Time to Zero" T(0), "Time to Two-Thirds Maximum Force" T(2/3), and "Maximum Force" F(max) are usually used to evaluate the solderability performance of various surface finishes. While a visual interpretation of the full curve is a quick way to compare various test results, this method is subjective and does not lend itself readily to a rigorous statistical evaluation. Therefore, very often, when a statistical evaluation is desired for comparing the solderability between different surface finishes or different test conditions, one of the individual parameters is chosen for convenience. However, focusing on a single output usually doesn't provide a complete picture of the solderability of the surface finish being evaluated.In this paper, various models here-in labeled as "point" and "area" models are generated using the three most commonly evaluated individual outputs T(0), T(2/3), and F(max). These models have been studied to quantify how well each describes the full wetting balance curve. The solderability score (S-Score) with ranking from 0 to 10 were given to quantify the wetting balance curve as the result of the model study, which corresponds well with experimental results.

Enthone

Resin Coated Copper Capacitive (RC3) Nanocomposites for System in a Package (SiP): Development of 3-8-3 structure

Technical Library | 2009-10-08 01:58:04.0

In the present study, we report novel ferroelectric-epoxy based polymer nanocomposites that have the potential to surpass conventional composites to produce thin film capacitors over large surface areas, having high capacitance density and low loss. Specifically, novel crack resistant and easy to handle Resin Coated Copper Capacitive (RC3) nanocomposites capable of providing bulk decoupling capacitance for a conventional power-power core, or for a three layer Voltage-Ground-Voltage type power core, is described.

i3 Electronics

The Effect of Solder Mask And Surface Mount Adhesive Types on a PCB Manufacturing Process.

Technical Library | 1999-07-21 09:04:04.0

A high volume manufacturer of printed circuit boards (PCBs) had attempted for many years to locate an adhesive that was robust enough to meet their manufacturing needs. This proved to be a challenge because they needed the adhesive to accommodate a wide range of different dispensing equipment and board designs. The two key performance criteria required from the adhesive were dispensability and adhesion...

Henkel Electronic Materials

Improving Thermal Cycle and Mechanical Drop Impact Resistance of a Lead-free Tin-Silver-Bismuth-Indium Solder Alloy with Minor Doping of Copper Additive

Technical Library | 2018-07-11 22:46:13.0

For a demanding automotive electronics assembly, a highly thermal fatigue resistant solder alloy is required, which makes the lead-free Sn-Ag-Cu type solder alloy unusable. Sn-Ag-Bi-In solder alloy is considered as a high reliability solder alloy due to significant improvement in thermal fatigue resistance as compared to a standard Sn-Ag-Cu alloy. The alloy has not only good thermal fatigue properties but it also has superior ductility and tensile strength by appropriate addition of In; however, initial results indicated a sub-par performance in joint reliability when it is soldered on a printed circuit board (PCB) with Electroless Nickel Immersion Gold (ENIG) surface finish. Numerous experiments were performed to find out appropriate alloying element which would help improve the performance on ENIG PCBs. Sn-Ag-Bi-In solder alloys with and without Cu additions were prepared and then tests were carried out to see the performance in a thermal fatigue test and a drop resistance test.to investigate the impact of Cu addition towards the improvement of joint reliability on ENIG finish PCB. Also, the mechanism of such improvement is documented.

Koki Company LTD

  1 2 3 4 Next

surface area of a pcb searches for Companies, Equipment, Machines, Suppliers & Information

Surface Mount Technology Association (SMTA)
Surface Mount Technology Association (SMTA)

The SMTA membership is a network of professionals who build skills, share practical experience and develop solutions in electronic assembly technologies and related business operations.

Training Provider / Events Organizer / Association / Non-Profit

6600 City W Pkwy
Eden Prairie, MN USA

Phone: 952-920-7682