Technical Library | 2023-07-25 16:50:02.0
Some of the new handheld communication devices offer real challenges to the paste printing process. Normally, there are very small devices like 01005 chip components as well as 0.3 mm pitch uBGA along with other devices that require higher deposits of solder paste. Surface mount connectors or RF shields with coplanarity issues fall into this category. Aperture sizes for the small devices require a stencil thickness in the 50 to 75 um (2-3 mils) range for effective paste transfer whereas the RF shield and SMT connector would like at least 150 um (6 mils) paste height. Spacing is too small to use normal step stencils. This paper will explore a different type of step stencil for this application; a "Two-Print Stencil Process" step stencil. Here is a brief description of a "Two-Print Stencil Process". A 50 to 75 um (2-3 mils) stencil is used to print solder paste for the 01005, 0.3 mm pitch uBGA and other fine pitch components. While this paste is still wet a second in-line stencil printer is used to print all other components using a second thicker stencil. This second stencil has relief pockets on the contact side of the stencil any paste was printed with the first stencil. Design guidelines for minimum keep-out distances between the relief step, the fine pitch apertures, and the RF Shields apertures as well relief pocket height clearance of the paste printed by the first print stencil will be provided.
Technical Library | 2021-10-06 17:54:32.0
The corrosion of Nickel-Palladium-Gold (Ni-Pd-Au) finish terminals in humid environments is known to be reduced with the application of a conformal coating such as acrylic. Corrosion has a higher rate of occurrence around the terminal 'knee' of a surface mount component, which may be reduced with the application of conformal coatings. Although radio frequency (RF) plasma processing is generally known to enhance conformity of conformal coating to surfaces through ionic bombardment, the effect on the functionality of assembled printed circuit boards (PCB) is not as well known. The purpose of this study is to assess whether RF plasma processing can enhance the adhesive and coverage qualities of an acrylic conformal coating on PCBs
Technical Library | 2017-06-01 17:12:08.0
The corrosion of Nickel-Palladium-Gold (Ni-Pd-Au) finish terminals in humid environments is known to be reduced with the application of a conformal coating such as acrylic. Corrosion has a higher rate of occurrence around the terminal ‘knee’ of a surface mount component, which may be reduced with the application of conformal coatings. Although radio frequency (RF) plasma processing is generally known to enhance conformity of conformal coating to surfaces through ionic bombardment, the effect on the functionality of assembled printed circuit boards (PCB) is not as well known. The purpose of this study is to assess whether RF plasma processing can enhance the adhesive and coverage qualities of an acrylic conformal coating on PCBs, specifically on Ni-Pd-Au terminals with a knee, and if plasma processing has an effect on the electrical functionality of components and fully assembled PCB.
Technical Library | 2021-06-15 15:11:43.0
Today's automated dispensing for electronics manufacturing is a complex and precise process in order to meet the challenges posed by ever more demanding assembly and component technology requirements. Dedicated dispenser technology is key to success in meeting challenging applications in a production environment with precision and repeatability. The major components that comprise a dispenser will be described, with a view toward understanding the importance of each; the result will illustrate how these sub-systems combine to create high-volume dispensing platforms. Real world examples with data substantiating the speed and accuracy obtained for some of the most common advanced dispensing applications in the market will be demonstrated such as high speed surface mount adhesive, wafer level Underfill and shield edge interconnects.
Technical Library | 2023-07-25 16:25:56.0
This paper address two significant applications of stencils in advance packaging field: 1. Ultra-Thin stencils for miniature component (0201m) assembly; 2. Deep Cavity stencils for embedded (open cavity) packaging. As the world of electronics continues to evolve with focus on smaller, lighter, faster, and feature-enhanced high- performing electronic products, so are the requirement for complex stencils to assemble such components. These stencil thicknesses start from less than 25um with apertures as small as 60um (or less). Step stencils are used when varying stencil thicknesses are required to print into cavities or on elevated surfaces or to provide relief for certain features on a board. In the early days of SMT assembly, step stencils were used to reduce the stencil thickness for 25 mil pitch leaded device apertures. Thick metal stencils that have both relief-etch pockets and reservoir step pockets are very useful for paste reservoir printing. Electroform Step-Up Stencils for ceramic BGA's and RF Shields are a good solution to achieve additional solder paste height on the pads of these components as well as providing exceptional paste transfer for smaller components like uBGAs and 0201s. As the components are getting smaller, for example 0201m, or as the available real estate for component placement on a board is getting smaller – finer is the aperture size and the pitch on the stencils. Aggressive distances from step wall to aperture are also required. Ultra-thin stencils with thicknesses in the order of 15um-40um with steps of 15um are used to obtain desired print volumes. Stencils with thickness to this order can be potential tools even to print for RDLs in the package.
1 |
The SMTA membership is a network of professionals who build skills, share practical experience and develop solutions in electronic assembly technologies and related business operations.
Training Provider / Events Organizer / Association / Non-Profit
6600 City W Pkwy
Eden Prairie, MN USA
Phone: 952-920-7682