Technical Library: tact time balanceing (Page 1 of 1)

IoT for Real-Time Measurement of High-Throughput Liquid Dispensing in Laboratory Environments

Technical Library | 2020-03-04 23:53:17.0

Critical to maintaining quality control in high-throughput screening is the need for constant monitoring of liquid-dispensing fidelity. Traditional methods involve operator intervention with gravimetric analysis to monitor the gross accuracy of full plate dispenses, visual verification of contents, or dedicated weigh stations on screening platforms that introduce potential bottlenecks and increase the plate-processing cycle time. We present a unique solution using open-source hardware, software, and 3D printing to automate dispenser accuracy determination by providing real-time dispense weight measurements via a network-connected precision balance. This system uses an Arduino microcontroller to connect a precision balance to a local network. By integrating the precision balance as an Internet of Things (IoT) device, it gains the ability to provide real-time gravimetric summaries of dispensing, generate timely alerts when problems are detected, and capture historical dispensing data for future analysis. All collected data can then be accessed via a web interface for reviewing alerts and dispensing information in real time or remotely for timely intervention of dispense errors. The development of this system also leveraged 3D printing to rapidly prototype sensor brackets, mounting solutions, and component enclosures.

SLAS Technology

Testing Digital Designs – The Boundary-scan Balance

Technical Library | 2010-05-20 17:17:03.0

As several industry pundits have expressed in recent years: "the era of 'one test method fits all' seems well behind us." For most test managers with even a modest mix of products, trying to formulate a test policy/philosophy has become a tricky balancing act at the best of times. James Stanbridge, Sales Manager UK for JTAG Technologies, and Steve Lees Managing Director of ATE Solutions look at the options.

JTAG Technologies B. V.

To Quantify a Wetting Balance Curve

Technical Library | 2017-10-19 01:17:56.0

Wetting balance testing has been an industry standard for evaluating the solderability of surface finishes on printed circuit boards (PCB) for many years. A Wetting Balance Curve showing Force as a function of Time, along with the individual data outputs "Time to Zero" T(0), "Time to Two-Thirds Maximum Force" T(2/3), and "Maximum Force" F(max) are usually used to evaluate the solderability performance of various surface finishes. While a visual interpretation of the full curve is a quick way to compare various test results, this method is subjective and does not lend itself readily to a rigorous statistical evaluation. Therefore, very often, when a statistical evaluation is desired for comparing the solderability between different surface finishes or different test conditions, one of the individual parameters is chosen for convenience. However, focusing on a single output usually doesn't provide a complete picture of the solderability of the surface finish being evaluated.In this paper, various models here-in labeled as "point" and "area" models are generated using the three most commonly evaluated individual outputs T(0), T(2/3), and F(max). These models have been studied to quantify how well each describes the full wetting balance curve. The solderability score (S-Score) with ranking from 0 to 10 were given to quantify the wetting balance curve as the result of the model study, which corresponds well with experimental results.

Enthone

Just‐In‐Time Material Management for the PCB Industry

Technical Library | 2017-11-03 13:34:15.0

As with any production industry, businesses in the PCB industry need to maintain a healthy balance between the components they keep in stock and those they use for meet client orders. Ordering too many components comes with serious disadvantages, as does not ordering enough, and PCB manufacturers need to stay as close as possible to a happy medium between the two.

Power Design Services

Re-Shoring or Near-Shoring Concepts Should be Strongly Considered when the OEM’s Goal is To Deliver Optimum Balance between Landed Cost and Time to Market

Technical Library | 2016-09-29 17:23:51.0

The old tactic of outsourcing to a low cost geography simply to deliver lowest cost direct and indirect labor was never a panacea supply chain solution. In fact, when evaluating solutions for lower volume and higher mix products typically found in the medical, industrial and public safety segments of the OEM market, IL & DL costs are only one subset of the total cost to land the product and service the ultimate customer. In this paper, there will be examination of what actual cost components should be included in a landed cost analysis, the soft costs that an OEM should consider to deliver outstanding performance in quality, logistics and delivery management of the supply chain solution. A detailed comparison using a 'case study' will be presented to demonstrate a total landed cost option versus one that is focused on IL/DL cost.

Kimball Electronics, Inc.

Effects of PCB Substrate Surface Finish and Flux on Solderability of Lead-Free SAC305 Alloy

Technical Library | 2021-10-20 18:21:06.0

The solderability of the SAC305 alloy in contact with printed circuit boards (PCB) having different surface finishes was examined using the wetting balance method. The study was performed at a temperature of 260 _C on three types of PCBs covered with (1) hot air solder leveling (HASL LF), (2) electroless nickel immersion gold (ENIG), and (3) organic surface protectant (OSP), organic finish, all on Cu substrates and two types of fluxes (EF2202 and RF800). The results showed that the PCB substrate surface finish has a strong effect on the value of both the wetting time t0 and the contact angle h. The shortest wetting time was noted for the OSP finish (t0 = 0.6 s with EF2202 flux and t0 = 0.98 s with RF800 flux), while the ENIG finish showed the longest wetting time (t0 = 1.36 s with EF2202 flux and t0 = 1.55 s with RF800 flux). The h values calculated from the wetting balance tests were as follows: the lowest h of 45_ was formed on HASL LF (EF2202 flux), the highest h of 63_ was noted on the OSP finish, while on the ENIG finish, it was 58_ (EF2202 flux). After the solderability tests, the interface characterization of cross-sectional samples was performed by means of scanning electron microscopy coupled with energy dispersive spectroscopy.

Foundry Research Institute

  1  

tact time balanceing searches for Companies, Equipment, Machines, Suppliers & Information