Technical Library: temperature (Page 3 of 20)

Evaluation Report Medium Temperature Dry Cabinet

Technical Library | 2024-02-07 18:49:35.0

Report of different drying temperatures

TOTECH Canada N.A Inc

Evaluating The Accuracy Of a Nondestructive Thermocouple Attach Method For Area-Array Package Profiling

Technical Library | 2011-01-06 18:03:18.0

The oven recipe, which consists of the reflow oven zone temperature settings and the speed of the conveyor, will determine a specific time‐temperature profile for a given PCB assembly. In order to achieve a good quality PCB assembly, the time‐temperature

KIC Thermal

Enhancing Mechanical Shock Performance Using Edgebond Technology

Technical Library | 2014-06-26 16:43:12.0

Edgebond adhesives have been widely used by the industry for improving the shock performance of area array packages. Most of the studies focus on the impact of material properties, such as coefficient of thermal expansion (CTE) and glass transition temperature (Tg), on reliability at room temperature. However, the operating temperature of a component on the printed circuit board bonded with edgebond adhesive can be close to or exceed Tg of the adhesive, where the material properties may be very different than at room temperature.

Cisco Systems, Inc.

High Temperature Ceramic Capacitors for Deep Well Applications

Technical Library | 2015-01-22 17:32:27.0

Temperature requirements for ceramic capacitors have increased significantly with recent advances in deep-well drilling technology. Increasing demand for oil and natural gas has driven the technology to deeper and deeper deposits resulting in extreme temperature environments up to 200°C and above. A novel capacitor solution utilizing temperature-stable base-metal electrode capacitors in a molded and leaded package addresses the growing market high temperature demands of (1) capacitance stability, (2) long service life, and (3) mechanical durability. A range of high temperature C0G capacitors capable of meeting this 200°C and above high temperature environment has been developed. This paper will review the electrical, reliability, and mechanical performance of this new capacitor solution

KEMET Electronics Corporation

The Conditions and Solutions of Lead-free Hand Soldering

Technical Library | 2013-01-05 22:21:01.0

More and more countries legislate to forbib lead usage in solder material. However, the lead-free solder wire has higher melting point and soldering temperature, increase soldering iron temperature may damage the PCB or components. How to solve this problem?

Leisto Industrial Co., Limited

Flexible Termination - Reliability in Stringent Environments

Technical Library | 2009-05-21 13:41:05.0

Failure due to board flex cracks persists as the dominant failure mode in multi-layer ceramic capacitors (MLCC). (...) This paper is intended to show the impact of temperature cycling, high-temperature life tests, and multiple bend exposures to the MLCC with this flexible termination.

KEMET Electronics Corporation

Does Thermal Cycling Impact the Electrical Reliability of a No-Clean Solder Paste Flux Residue

Technical Library | 2018-08-29 21:17:53.0

No-clean solder pastes are widely used in a number of applications that are exposed to wide variations in temperature during the life of the assembled electronics device. Some have observed that cracks can and do form in flux residue and have postulated that this is the result of or exacerbated by temperature cycling. Furthermore, the potential exists for the flux residue to soften or liquefy at elevated temperatures, and even flow if orientated parallel to gravity. In situations such as in automotive electronics, where significant temperature cycling is a reality and high reliability is a must, concern sometimes exists that the cracking and possible softening or liquefying of the residue may have a deleterious effect on the electrical reliability of the flux residue. This paper will attempt to address this concern.

Indium Corporation

Low Temperature Soldering Using SN-BI Alloys

Technical Library | 2020-04-01 23:32:29.0

Low temperature solder alloys are preferred for the assembly of temperature-sensitive components and substrates. The alloys in this category are required to reflow between 170 and 200oC soldering temperatures. Lower soldering temperatures result in lower thermal stresses and defects, such as warping during assembly, and permit use of lower cost substrates. Sn-Bi alloys have lower melting temperatures, but some of its performance drawbacks can be seen as deterrent for its use in electronics devices.Here we show that non-eutectic Sn-Bi alloys can be used to improve these properties and further align them with the electronics industry specific needs. The physical properties and drop shock performance of various alloys are evaluated, and their results are analysed in terms of the alloy composition, including Bi content and alloying additions.

Alpha Assembly Solutions

OOOH Colors, It Must Be Lead Free

Technical Library | 2014-06-23 14:50:52.0

It was unusual to see chip terminations change colors when tin lead solders were used but with the introduction of lead free reflow soldering and the corresponding increases in reflow temperatures terminations are now changing colors. Two conditions are present when reflow temperatures are increased for lead free solder alloys that leads to discoloration. Reflow temperatures are above the melting point of tin (Sn MP is 232oC). Air temperatures commonly used in forced convection reflow systems are high enough to both melt the tin plating on the termination allowing it to be pulled into the solder joint due to solder joint liquid solder surface tension leaving behind the exposed nickel barrier. Now those metal oxide colors will be visible due to high air temperatures during reflow.

Johanson Dielectrics, Inc.

A Study On Process, Strength And Microstructure Analysis Of Low Temperature SnBi Containing Solder Pastes Mixed With Lead-Free Solder Balls

Technical Library | 2021-08-25 16:34:37.0

As the traditional eutectic SnPb solder alloy has been outlawed, the electronic industry has almost completely transitioned to the lead-free solder alloys. The conventional SAC305 solder alloy used in lead-free electronic assembly has a high melting and processing temperature with a typical peak reflow temperature of 245ºC which is almost 30ºC higher than traditional eutectic SnPb reflow profile. Some of the drawbacks of this high melting and processing temperatures are yield loss due to component warpage which has an impact on solder joint formation like bridging, open defects, head on pillow.

Rochester Institute of Technology


temperature searches for Companies, Equipment, Machines, Suppliers & Information

Solder Paste Dispensing

Training online, at your facility, or at one of our worldwide training centers"
Best SMT Reflow Oven

World's Best Reflow Oven Customizable for Unique Applications
SMT feeders

High Precision Fluid Dispensers
2024 Eptac IPC Certification Training Schedule

High Throughput Reflow Oven
design with ease with Win Source obselete parts and supplies

"回流焊炉"