Technical Library: tensile (Page 1 of 1)

Analysis of the Influence of Shrinkage Tensile Stress in Potting Material on the Anti-Overload Performance of the Circuit Board

Technical Library | 2021-08-11 00:55:44.0

In this article, the influence of shrinkage tensile stress in potting materials on the anti-overload performance of a circuit board was studied. Firstly, the phenomenon of shrinkage tensile stress in common potting materials was analyzed, and it was found that the commonly used potting adhesives displayed large shrinkage characteristics. Secondly, a small experiment was set up to verify that the shrinkage tensile stress of potting adhesives would lead to printed circuit board (PCB) deformation, and the shrinkage stress was contrary to the acceleration direction of overload. Thirdly, the influence of potting adhesives on the overload resistance of the PCB was analyzed.

Nanjing University

Effect of Encapsulation Materials on Tensile Stress during Thermo-Mechanical Cycling of Pb-Free Solder Joints

Technical Library | 2019-03-06 21:26:14.0

Electronic assemblies use a large variety of polymer materials with different mechanical and thermal properties to provide protection in harsh usage environments. However, variability in the mechanical properties such as the coefficient of thermal expansion and elastic modulus effects the material selection process by introducing uncertainty to the long term impacts on the reliability of the electronics. Typically, the main reliability issue is solder joint fatigue which accounts for a large amount of failures in electronic components. Therefore, it is necessary to understand the effect of polymer encapsulations (coatings, pottings and underfills) on the solder joints when predicting reliability.This paper presents the construction and validation of a thermo-mechanical tensile fatigue specimen. The thermal cycling range was matched with potting expansion properties in order to vary the magnitude of tensile stress imposed on solder joints

DfR Solutions (acquired by ANSYS Inc)

Avoidance of Ceramic-Substrate-Based LED Chip Cracking Induced by PCB Bending or Flexing

Technical Library | 2022-09-25 20:18:33.0

Printed circuit board (PCB) bending and/or flexing is an unavoidable phenomenon that is known to exist and is easily encountered during electronic board assembly processes. PCB bending and/or flexing is the fundamental source of tensile stress induced on the electronic components on the board assembly. For more brittle components, like ceramic-based electronic components, micro-cracks can be induced, which can eventually lead to a fatal failure of the components. For this reason, many standards organizations throughout the world specify the methods under which electronic board assemblies must be tested to ensure their robustness, sometimes as a pre-condition to more rigorous environmental tests such as thermal cycling or thermal shock.

Cree Lighting

Progressive Failure Analysis of Laminates with Embedded Wrinkle Defects Based on an Elastoplastic Damage Model

Technical Library | 2021-03-04 15:16:27.0

Out-of-plane wrinkling has a significant influence on the mechanical performance of composite laminates. Numerical simulations were conducted to investigate the progressive failure behavior of fiber-reinforced composite laminates with out-of-plane wrinkle defects subjected to axial compression. To describe the material degradation, a three-dimensional elastoplastic damage model with four damage modes (i.e., fiber tensile failure, matrix failure, fiber kinking/splitting, and delamination) was developed based on the LaRC05 criterion. To improve the computational efficiency in searching for the fracture angle in the matrix failure analysis, a high-efficiency and robust modified algorithm that combines the golden section search method with an inverse interpolation based on an existing study is proposed.

Jinan University

An Experimental Investigation of Fracture Toughness and Volume Resistivity of Symmetric Laminated Epoxy/ Glass Fiber/CNT multiscale composites

Technical Library | 2022-01-26 15:26:56.0

In this work an attempt is made to improve the fracture toughness and electrical conductivity of epoxy/glass fiber based laminates by the inclusion of carbon nanotube (CNT) fillers. The fiber orientation of the epoxy/ glass fiber (GF) fabric laminates was optimized based on estimation of mechanical properties. The carboxylic acid functionalized CNTs were incorporated into epoxy matrix by ultra-sonication method. The nano filled epoxy resin was used to prepare laminates with 30/45 GF fabric orientation. The CNT content was varied and its effect on the tensile properties was determined. The fracture toughness of multiphase composites was estimated using single edge notch bend (SENB) test. The presence of CNTs improved the fracture toughness by a crack bridging mechanism. The volume resistivity of multiphase composites was found to be superior to the conventional epoxy/CNT composite. The presence of glass fabric reduces the number of inter-tube contacts contributing to the reduction in volume resistivity.

Amrita University

Improving Thermal Cycle and Mechanical Drop Impact Resistance of a Lead-free Tin-Silver-Bismuth-Indium Solder Alloy with Minor Doping of Copper Additive

Technical Library | 2018-07-11 22:46:13.0

For a demanding automotive electronics assembly, a highly thermal fatigue resistant solder alloy is required, which makes the lead-free Sn-Ag-Cu type solder alloy unusable. Sn-Ag-Bi-In solder alloy is considered as a high reliability solder alloy due to significant improvement in thermal fatigue resistance as compared to a standard Sn-Ag-Cu alloy. The alloy has not only good thermal fatigue properties but it also has superior ductility and tensile strength by appropriate addition of In; however, initial results indicated a sub-par performance in joint reliability when it is soldered on a printed circuit board (PCB) with Electroless Nickel Immersion Gold (ENIG) surface finish. Numerous experiments were performed to find out appropriate alloying element which would help improve the performance on ENIG PCBs. Sn-Ag-Bi-In solder alloys with and without Cu additions were prepared and then tests were carried out to see the performance in a thermal fatigue test and a drop resistance test.to investigate the impact of Cu addition towards the improvement of joint reliability on ENIG finish PCB. Also, the mechanism of such improvement is documented.

Koki Company LTD

Fabrication Of Solderable Intense Pulsed Light Sintered Hybrid Copper For Flexible Conductive Electrodes

Technical Library | 2021-11-03 17:05:39.0

Additively printed circuits provide advantages in reduced waste, rapid prototyping, and versatile flexible substrate choices relative to conventional circuit printing. Copper (Cu) based inks along with intense pulsed light (IPL) sintering can be used in additive circuit printing. However, IPL sintered Cu typically suffer from poor solderability due to high roughness and porosity. To address this, hybrid Cu ink which consists of Cu precursor/nanoparticle was formulated to seed Cu species and fill voids in the sintered structure. Nickel (Ni) electroplating was utilized to further improve surface solderability. Simulations were performed at various electroplating conditions and Cu cathode surface roughness using the multi-physics finite element method. By utilizing a mask during IPL sintering, conductivity was induced in exposed regions; this was utilized to achieve selective Ni-electroplating. Surface morphology and cross section analysis of the electrodes were observed through scanning electron microscopy and a 3D optical profilometer. Energy dispersive X-ray spectroscopy analysis was conducted to investigate changes in surface compositions. ASTM D3359 adhesion testing was performed to examine the adhesion between the electrode and substrate. Solder-electrode shear tests were investigated with a tensile tester to observe the shear strength between solder and electrodes. By utilizing Cu precursors and novel multifaceted approach of IPL sintering, a robust and solderable Ni electroplated conductive Cu printed electrode was achieved.

Hanyang University

Symor ESD storage dry cabinet(Working principle)

Technical Library | 2019-04-08 23:21:29.0

Climatest Symor® adopts molecular sieve to dry air, the whole system is controlled by microcomputer, when humidity is high, It will start to absorb moisture,when the humidity reach the pre-set value, it will stop absorbing, and then discharge the water to outside the cabinet by heating,again and again by automatic control. The most effective and environment-friendly moisture-absorbing desiccant is molecular sieve, molecular sieve is the microporous crystal material synthesized by silicon and aluminium oxide. In order to keep the crystal net discharge to be zero, atoms with cations are located in the crystal structure.and the cation used in these synthetic crystals is usually sodium. At present, there are two kinds of molecular sieves widely used in the dry box industry: Class A and Class X. Molecular sieves are synthesized, shaped and activated under strictly controlled production processes. The whole controlled sythesis process can ensure consistency of the three-dimensional pore size. 3A molecular sieve pore size is 3 angstroms, 4A molecular sieve pore size is 4 angstroms; 13X molecular sieve pore size is 8.5 angstroms. The working principle of molecular sieve: Molecular sieves adsorb molecules onto the crystal surface by physical attraction force. Since 95% surface area of the molecular sieve is within aperture,it needs to screen the adjacent molecules by different size. Only small size molecules can enter into the inner adsorption surface of the molecular sieve through the crystal aperture. This selective adsorption phenomenon is called molecular sieve effect. The molecular sieve adsorption capacity and charge density (polarity) are further related to the adsorbed molecules. The molecular sieves can further distinguish which of the mixed molecules can be adsorbed and determine to what extent the charge density can allow the molecules to be adsorbed onto the crystal. Water molecules are particularly small (2.6 angstroms), that belong to highly polar molecules (very strong positive and negative electron density), and are easily adsorbed by molecular sieves, even under very low moisture condition,once the water molecules are adsorbed,they will be firmly fixed on the crystal. The environment-friendly moisture absorption device is equipped with molecular sieve. When it’s absorbing, the memory alloy controller is in tensile state, and the spring is in contractive state,which just make the valve contact the outer baffle, this insulates the outside air from inside dry box air to achieve dehumidification purpose; and after molecular sieve absorbed moisture inside dry box and become saturated, the program will automatically control the memory alloy device to shrink it so that the valve reaches the inner baffle position. Meanwhile, due to the shrinkage of the memory alloy, the spring is stretched and the valve is pulled out of the outer baffle,so that the moisture in molecular sieve will be discharged into the outside. after the dehumidifying process finished, the program automatically control and reset the memory alloy and spring,to restart absorbing status.

Symor Instrument Equipment Co.,Ltd

  1  

tensile searches for Companies, Equipment, Machines, Suppliers & Information

Voidless Reflow Soldering

Reflow Soldering 101 Training Course
SMT spare parts - Qinyi Electronics

Stencil Printing 101 Training Course
Win Source Online Electronic parts

Software for SMT placement & AOI - Free Download.
SMT feeders

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.
PCB Handling Machine with CE

Smt Feeder repair service centers in Europe, North, South America