Technical Library: textile (Page 1 of 1)

Graphene electronic fibres with touch-sensing and light emitting functionalities for smart textiles

Technical Library | 2019-08-29 13:04:55.0

The true integration of electronics into textiles requires the fabrication of devices directly on the fibre itself using high-performance materials that allow seamless incorporation into fabrics. Woven electronics and opto-electronics, attained by intertwined fibres with complementary functions are the emerging and most ambitious technological and scientific frontier. Here we demonstrate graphene-enabled functional devices directly fabricated on textile fibres and attained by weaving graphene electronic fibres in a fabric. Capacitive touch-sensors and light-emitting devices were produced using a roll-to-roll-compatible patterning technique, opening new avenues for woven textile electronics. Finally, the demonstration of fabric-enabled pixels for displays and position sensitive functions is a gateway for novel electronic skin, wearable electronic and smart textile applications.

University of Exeter, College of Engineering, Mathematics and Physical Sciences

Different Types of Pressure Transmitters, Working Principle, and How to Select Pressure Transmitter

Technical Library | 2021-11-25 01:24:20.0

Pressure transmitter is a kind of pressure measuring instrument widely used in many transmitters. It is widely used in petroleum, chemical, metallurgy, food, electric power, medicine, papermaking, textile and other industries. It is mainly used to detect the differential pressure, pressure, absolute pressure and liquid level of fluid.

OKmarts Industrial Parts Mall

Advanced Technologies for Industry – Product Watch Flexible and printed electronics

Technical Library | 2021-07-13 19:51:10.0

Flexible electronics refers to a class of lightweight, flexible and electronic sensing components and electronic devices built on stretchable substrates1 that are used (and can be used) for a broad set of products and applications such as displays and sensors. The most prominent characteristic is that they can bend in contrast to electronic systems built in rigid materials. They are manufactured on flexible plastic substrates, such as polyamide, PEEK2 or transparent conductive polyester films3, or other materials such as paper, textile, or thin glass. The term flexible also refers to the roll-to-roll manufacturing process.

European Commission - Executive Agency for Small and Medium-sized Enterprises (EASME)

An Introduction To The Process Of Printed Electronics

Technical Library | 2023-03-13 19:12:56.0

Printed electronics (PE) is impacting almost every branch of manufacturing. The printing of electronics on mechanically flexible substrates such as plastic, paper and textile, using traditional printing techniques, provides novel applications for wearable and stretchable electronics. Government sponsored consortiums, universities, contract printers, startups and global manufacturers are developing processes to bring this technology to market faster, more costeffectively and at scale. By increasing the speed of technology adoption while following industrialization best practices, industry researchers aim to create processes that ramp up the scale of production for simple circuits and integrated conductive structures.

Jabil Circuit, Inc.

Stress Analysis and Optimization of a Flip Chip on Flex Electronic Packaging Method for Functional Electronic Textiles

Technical Library | 2020-12-24 02:50:56.0

A method for packaging integrated circuit silicon die in thin flexible circuits has been investigated that enables circuits to be subsequently integrated within textile yarns. This paper presents an investigation into the required materials and component dimensions in order to maximize the reliability of the packaging method. Two die sizes of 3.5 mm×8 mm× 0.53 mm and 2 mm×2 mm×0.1 mm have been simulated and evaluated experimentally under shear load and during bending. The shear and bending experimental results show good agreement with the simulation results and verify the simulated optimal thickness of the adhesive layer. Three underfill adhesives (EP30AO, EP37-3FLF, and Epo-Tek 301 2fl), three highly flexible adhesives (Loctite 4860, Loctite 480, and Loctite 4902), and three substrates (Kapton,Mylar, and PEEK) have been evaluated, and the optimal thickness of each is found. The Kapton substrate, together with the EP37-3FLF adhesive, was identified as the best materials combination with the optimum underfill and substrate thickness identified as 0.05 mm.

University of Southampton

  1  

textile searches for Companies, Equipment, Machines, Suppliers & Information