Technical Library | 2019-05-06 23:04:05.0
The temperature and humidity test chamber simulate the temperature and humidity, so there are a lot of things customers shoud notice in the process of use, although there is detailed instruction when purchasing the equipment. But some users just know how the device works and start using it. This is very easy to cause problems in the use of the equipment, so Symor intends to describe the safety details during the use of temperature and humidity chamber. 1. Before the test, determine if the sample contains flammable and explosive substances to avoid combustion or explosion during the test. Of course, also make sure there is no flammable and explosive material around the test equipment, otherwise it may cause fire and other accidents. 2, Do not open the chamber door to operate during the experiment, or the gas in the studio may cause the operator to burn and so on. 3. At the end of the test or at the time of regular cleaning of the test chamber, power off the equipment to avoid electrocution accidents. Also, when cutting off the equipment power, pull the power cord to pull out the plug, otherwise it may lead to a rupture of the power cord and so on. You can contact manufacturers if there are some places you donnot understand, do not dismantle and repair the temperature and humidity test chamber without authorization, otherwise it may lead to more serious problems.
Technical Library | 2014-09-04 17:43:19.0
The counterfeiting of electronic components has become a major challenge in the 21st century. The electronic component supply chain has been greatly affected by widespread counterfeit incidents. A specialized service of testing, detection, and avoidance must be created to tackle the worldwide outbreak of counterfeit integrated circuits (ICs). So far, there are standards and programs in place for outlining the testing, documenting, and reporting procedures. However, there is not yet enough research addressing the detection and avoidance of such counterfeit parts. In this paper we will present, in detail, all types of counterfeits, the defects present in them, and their detection methods. We will then describe the challenges to implementing these test methods and to their effectiveness. We will present several anti-counterfeit measures to prevent this widespread counterfeiting, and we also consider the effectiveness and limitations of these anti-counterfeiting techniques.
Technical Library | 2013-03-14 17:19:28.0
Commercial-off-the-shelf ball/column grid array packaging (COTS BGA/CGA) technologies in high reliability versions are now being considered for use in a number of National Aeronautics and Space Administration (NASA) electronic systems. Understanding the process and quality assurance (QA) indicators for reliability are important for low-risk insertion of these advanced electronic packages. This talk briefly discusses an overview of packaging trends for area array packages from wire bond to flip-chip ball grid array (FCBGA) as well as column grid array (CGA). It then presents test data including manufacturing and assembly board-level reliability for FCBGA packages with 1704 I/Os and 1-mm pitch, fine pitch BGA (FPBGA) with 432 I/Os and 0.4-mm pitch, and PBGA with 676 I/Os and 1.0-mm pitch packages. First published in the 2012 IPC APEX EXPO technical conference proceedings.
Technical Library | 2016-02-04 19:11:47.0
In a typical mechatronic manufacturing functional test setup, actual load simulations are usually done by connecting the DUT outputs to power or ground in order to establish either a high or low side driver. Each output is connected with different load and the test will either be sequential or concurrent. At lower power levels, these can usually be managed with general purpose switches. However, when it comes to higher power levels of currents more than 5 amps, such switching and loading might pose a greater challenge. Furthermore, critically in the manufacturing line, the tradeoff between cost and test time would have a great influence on the test strategy.This paper will present some key points to design a cost effective high power switching and load management solution.
Technical Library | 1999-08-05 10:27:43.0
This document is an update to the 1994 Quality and Reliability Roadmap issued in support of the 1994 National Technology Roadmap for Semiconductors. This report revisits the challenges, constraints, priorities, and research needs pertaining to quality and reliability issues. It also provides key project proposals that must be implemented to address concerns about reliability attainment and defect learning. An expanded section on test-to-test, diagnostics, and failure analysis; an edited version of the Product Analysis Forum Roadmap; and an appendix containing a draft report highlighting reliability issues is included.
Technical Library | 2018-11-20 21:33:57.0
There are several industry-accepted methods for determining the reliability of flux residues after assembly. The recommended methods of test sample preparation do not always closely mimic the thermal cycle experienced by an assembly. Therefore, extraction from actual assemblies has become a popular method of process control to assess consistency of post-reflow cleanliness. Every method of post-reflow flux residue characterization will depend on the reflow process followed to prepare the coupon.This investigation will focus on the effect of thermal conditions on the remainder of active ingredients in flux residues after assembly with no-clean solder pastes.
Technical Library | 2017-02-09 17:08:44.0
The SMT assembly world, especially within the commercial electronics realm, is dominated by no-clean solder paste technology. A solder paste flux residue that does not require removal is very attractive in a competitive world where every penny of assembly cost counts. One important aspect of the reliability of assembled devices is the nature of the no-clean solder paste flux residue. Most people in this field understand the importance of having a process that renders the solder paste flux residue as benign and inert as possible, thereby ensuring electrical reliability.But, of all the factors that play into the electrical reliability of the solder paste flux residue, is there any impact made by the age of the solder paste and how it was stored? This paper uses J-STD-004B SIR (Surface Insulation Resistance) testing to examine this question.
Technical Library | 2013-03-28 16:18:22.0
For the last couple of years, the main concerns regarding the electrical performance of blank PCB boards were impedance and ohmic resistance. Just recently, the need to reduce insertion loss came up in discussions with blank board customers (...) The paper describes the test vehicle and the testing methodology and discusses in detail the electrical performance characteristics. The influence of the independent variables on the performance characteristics is presented. Finally the thermal reliability of the boards built applying different copper foils and oxide replacements was investigated.
Technical Library | 2018-10-24 18:04:12.0
Polymer Thick Film (PTF)-based printed electronics (aka Printed Electronics) has improved in durability over the last few decades and is now a proven alternative to copper circuitry in many applications once thought beyond the capability of PTF circuitry. This paper describes peak performance and areas for future improvement.State-of-the-art PTF circuitry performance includes the ability to withstand sharp crease tests, 85C/85%RH damp heat 5VDC bias aging (silver migration), auto seat durability cycling, SMT mandrel flexing, and others. The IPC/SGIA subcommittee for Standards Tests development has adopted several ASTM test methods for PTF circuitry and is actively developing needed improvements or additions. These standards are described herein. Advantages of PTF circuitry over copper include: varied conductive material compositions, lower cost and lower environmental impact. Necessary improvements include: robust integration of chip and power, higher conductivity, and fine line multi-layer patterning.
Technical Library | 2020-08-16 14:50:25.0
Not all desiccant bags are created or perform equally. Performance measures include: a) How long does desiccant last? b) How much are can be desiccated in a given area? c) How much moisture is retained, and or released back into the atmosphere? This article walks engineers through various test they can perform to determine efficacy. Additionally, the article highlight between adsorption vs adsorption.
A global industrial auction and valuation business with extensive experience in SMT, PCB Assembly & Manufacturing, Test, Semiconductor and other Electronics Machinery & Equipment.
Manufacturer / Equipment Dealer / Broker / Auctions
896 Main Street
Branford, CT USA
Phone: 203-488-7020