Technical Library | 2023-01-17 17:19:44.0
A test program was developed to evaluate the effectiveness of vacuum reflow processing on solder joint voiding and subsequent thermal cycling performance. Area array package test vehicles were assembled using conventional reflow processing and a solder paste that generated substantial void content in the solder joints. Half of the population of test vehicles then were re-processed (reflowed) using vacuum reflow. Transmission x-ray inspection showed a significant reduction in solder voiding after vacuum processing. The solder attachment reliability of the conventional and vacuum reflowed test vehicles was characterized and compared using two different accelerated thermal cycling profiles. The thermal cycling results are discussed in terms of the general impact of voiding on solder thermal fatigue reliability, results from the open literature, and the evolving industry standards for solder voiding. Recommendations are made for further work based on other void reduction methods and additional reliability studies.
Technical Library | 2023-01-17 17:22:28.0
The impact of voiding on the solder joint integrity of ball grid arrays (BGAs)/chip scale packages (CSPs) can be a topic of lengthy and energetic discussion. Detailed industry investigations have shown that voids have little effect on solder joint integrity unless they fall into specific location/geometry configurations. These investigations have focused on thermal cycle testing at 0°C-100°C, which is typically used to evaluate commercial electronic products. This paper documents an investigation to determine the impact of voids in BGA and CSP components using thermal cycle testing (-55°C to +125°C) in accordance with the IPC- 9701 specification for tin/lead solder alloys. This temperature range is more typical of military and other high performance product use environments. A proposed BGA void requirement revision for the IPC-JSTD-001 specification will be extracted from the results analysis.
Technical Library | 2007-01-31 15:17:04.0
The goal of this project is to evaluate the reliability of lead-free BGA solder joints with a variety of different pad sizes using several different BGA rework methods. These methods included BGAs reworked with both flux only and solder paste attachment techniques and with or without the use of the BEST stay in place StencilQuick™. The daisy chained test boards were placed into a thermal test chamber and cycled between -25ºC to 125ºC over a 30 minute cycle with a 30 minute dwell on each end of the cycle. Each BGA on the board was wired and the continuity assessed during the 1000 cycles the test samples were in the chamber.
Technical Library | 2020-12-10 15:49:40.0
Electronic assemblies should have longer and longer service life. Today there are partially demanded 20 years of functional capability for electronics for automotive application. On the other hand, smaller components, such as resistors of size 0201, are able to endure an increasing number of thermal cycles until fail of solder joints, so these are tested sometimes up to 4000 cycles. But testing until the end of life is essential for the determination of failure rates and the prognosis of reliability. Such tests require a lot of time, but this is often not available in developing of new modules. A further acceleration by higher cycle temperatures is usually not possible, because the materials are already operated at the upper limit of the load. However, the duration can be shortened by the use of liquids for passive tests, which allow faster temperature changes and shorter dwell times because of better heat transfer compared to air. The question is whether such tests lead to comparable results and what failure mechanisms are becoming effective. The same goes for active temperature cycles, in which the components itself are heated from inside and the substrate remains comparatively cold. This paper describes the various accelerated temperature cycling tests, compares and evaluates the related degradation of solder joints.
Technical Library | 2020-02-05 18:20:06.0
Consortium Projects - Thermal Cycling Reliability Consortium projects allow for joint research to investigate the reliability of multiple solder alloys under a variety of environmental stress conditions. Project jointly sponsored by iNEMI and HDP User Group and including CALCE and Universal consortium currently assessing 15 third-generation solder alloys..
Technical Library | 2016-01-12 11:05:28.0
The electronic industry is currently very interested in low temperature soldering processes such as using Sn/Bi alloy to improve process yield, eliminate the head-in-pillow effect, and enhance rework yield. However, Sn/Bi alloy is not strong enough to replace lead-free (SAC) and eutectic Sn/Pb alloys in most applications. In order to improve the strength of Sn/Bi solder joints, enhance mechanical performance, and improve reliability properties such as thermal cycling performance of soldered electronic devices, YINCAE has developed a low temperature solder joint encapsulant for Sn/Bi soldering applications. This low temperature solder joint encapsulant can be dipped, dispensed, or printed. After reflow with Sn/Bi solder paste or alloy, solder joint encapsulant encapsulates the solder joint. As a result, the strength of solder joints is enhanced by several times, and thermal cycling performance is significantly improved. All details will be discussed in this paper.
Technical Library | 2016-01-08 11:56:03.0
Solder joint encapsulant adhesives have been successfully used to enhance the strength of solder joints and improve thermal cycling as well as drop performance in finished products. The use of solder joint encapsulant adhesives can eliminate the need for underfill materials and the underfill process altogether, thus simplifying rework, which results in a lower cost of ownership.Solder joint encapsulant adhesives include: low temperature and high temperature solder joint encapsulant adhesives, and their derivatives. Each solder joint encapsulant adhesive has: unfilled and filled solder joint encapsulant adhesives, and solder joint encapsulant paste. Each solder joint encapsulant product has been designed for different applications. In this paper, we are going to discuss the details and future of solder joint encapsulant adhesives.
Technical Library | 2012-09-13 20:45:17.0
First published in the 2012 IPC APEX EXPO technical conference proceedings. Prior to committing production boards to vapor phase soldering, we performed an evaluation to assess reliability and evaluate the vacuum soldering option. The reliability of vapor
Technical Library | 2019-03-06 21:26:14.0
Electronic assemblies use a large variety of polymer materials with different mechanical and thermal properties to provide protection in harsh usage environments. However, variability in the mechanical properties such as the coefficient of thermal expansion and elastic modulus effects the material selection process by introducing uncertainty to the long term impacts on the reliability of the electronics. Typically, the main reliability issue is solder joint fatigue which accounts for a large amount of failures in electronic components. Therefore, it is necessary to understand the effect of polymer encapsulations (coatings, pottings and underfills) on the solder joints when predicting reliability.This paper presents the construction and validation of a thermo-mechanical tensile fatigue specimen. The thermal cycling range was matched with potting expansion properties in order to vary the magnitude of tensile stress imposed on solder joints
Technical Library | 2021-08-25 16:28:36.0
In this study, a Sn–Bi composite solder paste with thermosetting epoxy (TSEP Sn–Bi) was prepared by mixing Sn–Bi solder powder, flux, and epoxy system. The melting characteristics of the Sn–Bi solder alloy and the curing reaction of the epoxy system were measured by differential scanning calorimeter (DSC). A reflow profile was optimized based on the Sn–Bi reflow profile, and the Organic Solderability Preservative (OSP) Cu pad mounted 0603 chip resistor was chosen to reflow soldering and to prepare samples of the corresponding joint. The high temperature and humidity reliability of the solder joints at 85 #14;C/85% RH (Relative Humidity) for 1000 h and the thermal cycle reliability of the solder joints from