Technical Library | 2008-10-01 14:02:27.0
This paper proposes an integrated system for film application process than consists of closed loop mass calibration to assure film thickness, a noncontact fast jetting process with high edge definition capable of applying films for highly selective areas and patterns. A system to obtain homogeneity of the solid-fluid mix is described and results are shared.
Technical Library | 2013-10-13 10:54:13.0
The measurement of the conformal coating thickness on a printed circuit board (PCB) to ensure internal and international standards are met is now a critical factor in conformal coating process control. There are several methods for measurement of conformal coating thickness and they fall into two categories. These categories are wet film measurements applied during coating application and dry film measurements made after the coating is dried enough not to damage the coating.
Technical Library | 2015-07-21 13:50:37.0
Achieving an even coat at the right desired thickness is a major challenge when it comes to applying conformal coating to a Printed Circuit Board (PCB). Applying a coating too thin will ultimately render the electronic assembly vulnerable to potential environmental risks therefore defeating the purpose of the coating. Apply the coat too thick, and it could leave the electronic specific components non-functional therefore destroying the electronic assembly entirely. Coating thickness must meet quality specifications. Measurements for coating thickness may be taken while film is dry or wet. Once measurements are recorded, thickness is compared to quality specifications and fluid dispensing automation machinery is calibrated as necessary. There are a handful of methods for measuring conformal coating thickness that are commonly used in the Electronic Manufacturing Services (EMS) and Original Electronic Manufacturer (OEM) industries. A few commonly used methods for checking conformal coating thickness include:
Technical Library | 2021-07-13 19:59:34.0
We have investigated the processing of lead-zirconate-titanate-based thick films by inkjet printing Pb (Zr0.53Ti0.47)0.98Nb0.02O3 with a 6 mol% excess of PbO nanosized powder dispersed in water. Differentwaveforms were employed to determine the optimum size and shape of the drops. A uniform, defect-free pattern with dimensions of 4 mm × 4 mm can be printed using 20 V and a drop spacing of 20 μm. The inkjet-printed films were heated to 400 °C to remove the organics and subsequently sintered at 750 and 850 °C. The correlations between the density, grain size and electromechanical properties of the thick films and bulk ceramics are qualitatively discussed. A thickness coupling factor of 46% was obtained for a 15-μm-thick film sintered at low temperature of 850 °C, which is comparable to the value of the bulk ceramic with an identical nominal chemical composition. Our results are important for the economic and environmental-benign printing of piezoelectric materials applicable in variety of electronic devices, such as sensors, actuators, transformers, piezoelectric energy harvesters and transducers.
Technical Library | 2010-04-15 20:42:44.0
The high level of current interest in embedded passives in printed circuit boards is driven by the tremendous pressure to pack more circuitry into smaller spaces. However, adoption has been limited due to design, prototyping and infrastructure issues, as well as the stability and tolerances necessary for widespread replacement of discretes. The focus of this work has been to develop a polymer thick film resistor technology to incorporate reliable organic resistors inside printed wiring boards using standard PWB processing.
Technical Library | 2020-09-08 16:43:32.0
Atomic layer deposition (ALD) is an ultra-thin film deposition technique that has found many applications owing to its distinct abilities. They include uniform deposition of conformal films with controllable thickness, even on complex three-dimensional surfaces, and can improve the efficiency of electronic devices. This technology has attracted significant interest both for fundamental understanding how the new functional materials can be synthesized by ALD and for numerous practical applications, particularly in advanced nanopatterning for microelectronics, energy storage systems, desalinations, catalysis and medical fields. This review introduces the progress made in ALD, both for computational and experimental methodologies, and provides an outlook of this emerging technology in comparison with other film deposition methods. It discusses experimental approaches and factors that affect the deposition and presents simulation methods, such as molecular dynamics and computational fluid dynamics, which help determine and predict effective ways to optimize ALD processes, hence enabling the reduction in cost, energy waste and adverse environmental impacts. Specific examples are chosen to illustrate the progress in ALD processes and applications that showed a considerable impact on other technologies.
Technical Library | 2017-11-22 12:38:51.0
The use of copper foils laminated to polyimide (PI) as flexible printed circuit board precursor is a standard practice in the PCB industry. We have previously described[1] an approach to very thin copper laminates of coating uniform layers of nano copper inks and converting them into conductive foils via photonic sintering with a multibulb conveyor system, which is consistent with roll-to-roll manufacturing. The copper thickness of these foils can be augmented by electroplating. Very thin copper layers enable etching fine lines in the flexible circuit. These films must adhere tenaciously to the polyimide substrate.In this paper, we investigate the factors which improve and inhibit adhesion. It was found that the ink composition, photonic sintering conditions, substrate pretreatment, and the inclusion of layers (metal and organic) intermediate between the copper and the polyimide are important.
Technical Library | 2018-10-24 18:04:12.0
Polymer Thick Film (PTF)-based printed electronics (aka Printed Electronics) has improved in durability over the last few decades and is now a proven alternative to copper circuitry in many applications once thought beyond the capability of PTF circuitry. This paper describes peak performance and areas for future improvement.State-of-the-art PTF circuitry performance includes the ability to withstand sharp crease tests, 85C/85%RH damp heat 5VDC bias aging (silver migration), auto seat durability cycling, SMT mandrel flexing, and others. The IPC/SGIA subcommittee for Standards Tests development has adopted several ASTM test methods for PTF circuitry and is actively developing needed improvements or additions. These standards are described herein. Advantages of PTF circuitry over copper include: varied conductive material compositions, lower cost and lower environmental impact. Necessary improvements include: robust integration of chip and power, higher conductivity, and fine line multi-layer patterning.
Technical Library | 2020-07-29 19:58:48.0
The majority of flexible circuits are made by patterning copper metal that is laminated to a flexible substrate, which is usually polyimide film of varying thickness. An increasingly popular method to meet the need for lower cost circuitry is the use of aluminum on Polyester (Al-PET) substrates. This material is gaining popularity and has found wide use in RFID tags, low cost LED lighting and other single-layer circuits. However, both aluminum and PET have their own constraints and require special processing to make finished circuits. Aluminum is not easy to solder components to at low temperatures and PET cannot withstand high temperatures. Soldering to these materials requires either an additional surface treatment or the use of conductive epoxy to attach components. Surface treatment of aluminum includes the likes of Electroless Nickel Immersion Gold plating (ENIG), which is extensive wet-chemistry and cost-prohibitive for mass adoption. Conductive adhesives, including Anisotropic Conductive Paste (ACP), are another alternate to soldering components. These result in component substrate interfaces that are inferior to conventional solders in terms of performance and reliability. An advanced surface treatment technology will be presented that addresses all these constraints. Once applied on Aluminum surfaces using conventional printing techniques such as screen, stencil, etc., it is cured thermally in a convection oven at low temperatures. This surface treatment is non-conductive. To attach a component, a solder bump on the component or solder printed on the treated pad is needed before placing the component. The Aluminum circuit will pass through a reflow oven, as is commonly done in PCB manufacturing. This allows for the formation of a true metal to metal bond between the solder and the aluminum on the pads. This process paves the way for large scale, low cost manufacturing of Al-PET circuits. We will also discuss details of the process used to make functional aluminum circuits, study the resultant solder-aluminum bond, shear results and SEM/ EDS analysis.
1 |