Technical Library | 2024-02-02 07:48:31.0
Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer In today's rapidly evolving electronics manufacturing landscape, optimizing efficiency, cost-effectiveness, and precision remains paramount. Businesses engaged in producing industrial control boards, computer motherboards, mobile phone motherboards, and mining machine boards face ongoing challenges in streamlining production processes. The integration of expensive equipment strains budgets, making the creation of an efficient, cost-effective high-speed SMT line a daunting task. However, a solution exists that seamlessly combines these elements into a singular, high-performance, and cost-effective SMT line. Let's delve into the specifics. A Comprehensive High-Speed SMT Line Our innovative solution amalgamates two pivotal components: a cutting-edge SMT (Surface Mount Technology) production line and a laser cutting line equipped with a depanelizer. The SMT Production Line The high-speed SMT line comprises several essential components, each fulfilling a unique role in the manufacturing process: 1. PCB Loader: This initial stage involves loading boards onto the production line with utmost care. Our Board Loader prioritizes safety, incorporating various safety light curtains and sensors to promptly halt operations and issue alerts in case of any anomalies. 2. Laser Marking Machine: Every PCB receives a unique two-dimensional code or barcode, facilitating comprehensive traceability. Despite the high-temperature laser process potentially leading to dust accumulation on PCB surfaces, our dedicated PCB Surface Cleaner swiftly addresses this issue. 3. SMT Solder Paste Printer: This stage involves applying solder paste to the boards, a fundamental step in the manufacturing process. 4. SPI (Solder Paste Inspection): Meticulous inspections are conducted at this stage. Boards passing inspection proceed through the NG (No Good) Buffer Conveyor to the module mounters. Conversely, "No Good" results prompt storage of PCBs in the NG Buffer Conveyor, capable of accommodating up to 25 PCBs. Operators can retrieve these NG boards for rework after utilizing our specialized PCB Mis Cleaner to remove solder paste. 5. Module Mounters: These machines excel in attaching small and delicate components, necessitating precision and expertise in the module mounting process. 6. Standard Pick And Place Machines: The selection of these machines is contingent upon your specific BOM (Bill of Materials) list. 7. Pre-Reflow AOI (Automated Optical Inspection): Boards undergo examination for component quality at this stage. Detected issues prompt the Sorting Conveyor to segregate boards for rework. 8. Reflow Oven: Boards undergo reflow soldering, with our Lyra series reflow ovens recommended for their outstanding features, including nitrogen capability, flux recycling, and water cooling function, ensuring impeccable soldering results. 9. Post-Reflow AOI: This stage focuses on examining soldering quality. Detected defects prompt the Sorting Conveyor to segregate boards for further inspection or rework. Any identified defects are efficiently addressed with the BGA rework station, maintaining the highest quality standards. 10. Laser Depanelizer: Boards advance to the laser depanelizer, where precision laser cutting, often employing green light for optimal results, ensures smoke-free, highly accurate separation of boards. 11. PCB Placement Machine: Cut boards are subsequently managed by the PCB Placement Machine, arranging them as required. With this, all high-speed SMT line processes are concluded. Efficiency And Output This production line demonstrates exceptional productivity when manufacturing motherboards with approximately 3000 electronic components, boasting the potential to assemble up to 180 boards within a single hour. Such efficiency not only enhances output but also ensures cost-effectiveness and precision in your manufacturing processes. At I.C.T, we specialize in crafting customized SMT production line solutions tailored to your product and specific requirements. Our equipment complies with European safety standards and holds CE certificates. For inquiries or to explore our exemplary post-sales support, do not hesitate to contact us. The I.C.T team is here to elevate your electronics manufacturing to new heights of efficiency and cost-effectiveness.
Technical Library | 2010-01-13 12:34:10.0
Micro-sectioning (sometimes referred to as cross-sectioning)is a technique, used to characterize materials or to perform a failure mode analysis, for exposing an internal section of a PCB or package. Destructive in nature, cross-sectioning requires encapsulation of the specimen in order to provide support, stability, and protection. Failures that can be investigated through micro-sectional analysis include component defects, thermo-mechanical failures, processing failures related to solder reflow, opens or shorts, voiding and raw material evaluations.
Technical Library | 2023-06-12 18:52:18.0
This paper will review stencil design requirements for printing solder paste around and in through-hole pads / openings. There is much interest in this procedure since full implementation allows the placement of both through-hole components as well as SMD's and the subsequent reflow of both simultaneously. This in turn eliminates the need to wave solder or hand solder through-hole components.
Technical Library | 2009-12-14 20:27:54.0
Solder paste is the most recognized form of solder used in electronics assembly today. A surface mount application depends on solder paste to attach the components to the circuit board. However, solder paste may not be the only solution. This is especially true when working with through-hole components or very large devices that require more solder than can be supplied by printed solder paste. In fact, quite often a PCB involves mixed technology that requires more than one form of solder. Solder paste is used for the surface mount components and solder preforms are utilized to attach the leads on through-hole components, avoiding wave or selective soldering.
Technical Library | 2020-05-07 03:46:27.0
The selective soldering process has evolved to become a standard production process within the electronics assembly industry, and now accommodates a wide variety of through-hole component formats in numerous applications. Most through-hole components can be easily soldered with the selective soldering process without difficulty, however some types of challenging components require additional attention to ensure optimum quality control is maintained. Several high thermal mass components can place demands on the selective soldering process, while the use of specialized solder fixtures and/or pallets often places an additional thermal demand on the preheating process. Fine-pitch through-hole components and connectors place a different set of demands on the selective soldering process and typically require special attention to lead projection and traverse speed to minimize bridging between adjacent pins. Dual in-line memory module (DIMM) connectors, compact peripheral component interface (cPCI) connectors, coax connectors and other high thermal mass components as well as fine-pitch microconnectors,can present challenges when soldered into backplanes or multilayer printed circuit board assemblies. Adding to this challenge, compact peripheral component interface connectors can present additional solderability issues due to their beryllium copper termination pins.
Technical Library | 2019-10-18 10:37:25.0
It usually does not make any logic to invest in costly fabrication equipment in case you just desire to spin some prototypes and rather outsource your Printed Circuit Board assembly as well as prototype fabrication to a trustworthy vendor. I would provide a few tips as to what to consider when seeking a contract manufacturer. The two most common procedures associated with Printed Circuit Board Assembly are through-hole technology and surface mount technology. Talking about the difference between through-hole technology and surface mount technology. Through-hole elements have metal leads, & these metal leads are supplied through-plated holes inside the circuit board. On the other hand, SMT elements might or might not have leads, nevertheless most significantly, they are developed to be soldered onto the surface of the circuit boards straight on the same side as the element body. A lot of contract manufacturers would provide a quick quote mechanism over their site for the fabrication of circuit boards as well as assembly of prototypes. This would bank your time when comparing various vendors. Ensure that the quote system facilitates you to fill your details, for instance, board material, thickness, copper thickness, milling, etc. in order that you can avail of a precise quote devoid of any surprises afterward. And this is quite necessary. Typically the cost per board would decline as quality upgrades. This is owing to the fairly high setup price of circuit board fabrication over and above component assembly. A few vendors would employ a system where they unite boards from various consumers. This manner the setup price would be circulated among numerous clients. When you fabricate an item, you clearly don’t desire to have to fabricate a big quantity of boards straight away whilst you improve your design. One restriction with small quantity prototypes though is that the option of materials & material thicknesses would be constrained. In case you are employing a particular material then opportunities are there will not be any other clients employing the same material. Additionally, lead time plays a major role in indecisive prices. A longer lead time facilitates the fabricator more liberty in slotting your fabrication. This is basically reflected in cheaper prices that would view in the quote section. Clearly, if you are in a hurry and desire to be moved to the summit of the pile you would require splurging more dollars. Ensure that your contract fabricator would support the file sort for producing which you offer. The most general format for printed circuit board fabrication is the Gerber format nonetheless a few vendors would moreover embrace board files from general printed circuit board software products. A few suppliers also provide in house printed circuit design. Even in case, you create your board yourself, choosing a vendor with design services might prove resourceful in case there is an issue with your files. In this scenario, your vendor could make swift changes that would neglect pricey delays. If you are looking for an Electronic Manufacturing Services (EMS Assembly) provider, then the web is the best to search.
Technical Library | 2008-01-24 21:42:39.0
Although many through-hole components are being replaced by their surface mount (SMT) counterparts, printed circuit boards (PCBs) are still being designed with both types of components. Often, there are interconnect hardware, displays, or other components that cannot withstand the exposure to the high temperature involved in the wave soldering process. They are generally soldered by hand. The challenge is to determine the optimal method manufacturers can use to solder these boards populated with mixed technology.
Technical Library | 2023-11-14 19:42:24.0
Selective soldering is not a new process. It is already exists and used 30 years ago for through-hole component by different industries for automotive and medical products. Now most manufacturing industries are moving forward on SMD's miniaturization to reduce PCB complexity and balance component density on the board to ensure a good assembling process. By this concept, why selective soldering still utilized and used? Does it because of component reliability, uniqueness or complexity having this in mind next question will be which platform will best fit for the product
Technical Library | 2023-06-12 16:52:47.0
The technological advancement of component and PCB technology from through-hole to surface mount (SMT) is a major factor in the miniaturization of today's electronics. Smaller and smaller component sizes and more densely packed PCBs lead to more powerful designs in much smaller product packages. With advancement, however, comes a new set of challenges in building these smaller, more complex assemblies. This is the challenge original equipment manufacturers (OEM) and contract manufacturers (CM) face today.
Technical Library | 2022-08-08 15:06:06.0
Selective soldering has evolved to become a standard production process within the electronics assembly industry, and now accommodates a wide variety of through-hole component formats in numerous applications. Most through-hole components can be easily soldered with the selective soldering process without difficulty however some types of challenging components require additional attention to ensure that optimum quality is maintained. Several high thermal mass components can place demands on the selective soldering process, while the use of specialized solder fixtures, or solder pallets, often places additional thermal demand on the preheating process. Fine-pitch through-hole components and connectors place a different set of demands on the selective soldering process and typically require special attention to lead projection and traverse speed to minimize bridging between adjacent pins. Dual in-line memory module (DIMM) connectors, compact peripheral component interface (cPCI) connectors, coax connectors and other high thermal mass components as well as fine-pitch microconnectors, can present challenges when soldered into backplanes or multilayer printed circuit board assemblies. Adding to this challenge, compact peripheral component interface connectors can present additional solderability issues because of their beryllium copper base metal pins. Key Terms: Selective soldering, drop-jet fluxing, sustained preheating, flux migration, adjacent clearance, lead-to-hole aspect ratio, lead projection, thermal reliefs, gold embrittlement, solderability testing.