Technical Library: through hole insufficient fill (Page 1 of 2)

Via Filling Applications in Practice

Technical Library | 2020-07-15 18:49:03.0

Via Filling • Through Hole Vias - IPC-4761 – Plugging – Filling – Filled & Capped • MicroviaFilling and Stacked Vias

Würth Elektronik GmbH & Co. KG

Advanced Cu Electroplating Process for Any Layer Via Fill Applications with Thin Surface Copper

Technical Library | 2019-06-26 23:21:49.0

Copper-filled micro-vias are a key technology in high density interconnect (HDI) designs that have enabled increasing miniaturization and densification of printed circuit boards for the next generation of electronic products. Compared with standard plated through holes (PTHs) copper filled vias provide greater design flexibility, improved signal performance, and can potentially help reduce layer count, thus reducing cost. Considering these advantages, there are strong incentives to optimize the via filling process. This paper presents an innovative DC acid copper via fill formulation, for VCP (Vertical Continues Plating) applications which rapidly fills vias while minimizing surface plating.

MacDermid Inc.

Via Fill and Through Hole Plating Process with Enhanced TH Microdistribution

Technical Library | 2019-07-17 17:56:34.0

The increased demand for electronic devices in recent years has led to an extensive research in the field to meet the requirements of the industry. Electrolytic copper has been an important technology in the fabrication of PCBs and semiconductors. Aqueous sulfuric acid baths are explored for filling or building up with copper structures like blind micro vias (BMV), trenches, through holes (TH), and pillar bumps. As circuit miniaturization continues, developing a process that simultaneously fills vias and plates TH with various sizes and aspect ratios, while minimizing the surface copper thickness is critical. Filling BMV and plating TH at the same time, presents great difficulties for the PCB manufactures. The conventional copper plating processes that provide good via fill and leveling of the deposit tend to worsen the throwing power (TP) of the electroplating bath. TP is defined as the ratio of the deposit copper thickness in the center of the through hole to its thickness at the surface. In this paper an optimization of recently developed innovative, one step acid copper plating technology for filling vias with a minimal surface thickness and plating through holes is presented.

MacDermid Inc.

Filling of Microvias and Through Holes by Electrolytic Copper Plating –Current Status and Future Outlook

Technical Library | 2020-03-12 13:10:35.0

The electronics industry is further progressing in terms of smaller, faster, smarter and more efficient electronic devices. This continuous evolving environment caused the development on various electrolytic copper processes for different applications over the past several decades. (...) This paper describes the reasons for development and a roadmap of dimensions for copper filled through holes, microvias and other copper plated structures on PCBs.

Atotech

Fill the Void IV: Elimination of Inter-Via Voiding

Technical Library | 2019-10-10 00:26:28.0

Voids are a plague to our electronics and must be eliminated! Over the last few years we have studied voiding in solder joints and published three technical papers on methods to "Fill the Void." This paper is part four of this series. The focus of this work is to mitigate voids for via in pad circuit board designs. Via holes in Quad Flat No-Lead (QFN) thermal pads create voiding issues. Gasses can come out of via holes and rise into the solder joint creating voids. Solder can also flow down into the via holes creating gaps in the solder joint. One method of preventing this is via plugging. Via holes can be plugged, capped, or left open. These via plugging options were compared and contrasted to each other with respect to voiding. Another method of minimizing voiding is through solder paste stencil design. Solder paste can be printed around the via holes with gas escape routes. This prevents gasses from via holes from being trapped in the solder joint. Several stencil designs were tested and voiding performance compared and contrasted. In many cases voiding will be reduced only if a combination of mitigation strategies are used. Recommendations for combinations of via hole plugging and stencil design are given. The aim of this paper is to help the reader to "Fill the Void."

FCT ASSEMBLY, INC.

Copper Electroplating Technology for Microvia Filling

Technical Library | 2021-05-26 00:53:26.0

This paper describes a copper electroplating enabling technology for filling microvias. Driven by the need for faster, smaller and higher performance communication and electronic devices, build-up technology incorporating microvias has emerged as a viable multilayer printed circuit manufacturing technology. Increased wiring density, reduced line widths, smaller through-holes and microvias are all attributes of these High Density Interconnect (HDI) packages. Filling the microvias with conductive material allows the use of stacked vias and via in pad designs thereby facilitating additional packaging density. Other potential design attributes include thermal management enhancement and benefits for high frequency circuitry. Electrodeposited copper can be utilized for filling microvias and provides potential advantages over alternative via plugging techniques. The features, development, scale up and results of direct current (DC) and periodic pulse reverse (PPR) acid copper via filling processes, including chemistry and equipment, are described.

Rohm and Haas/Advanced Materials

Pin in Paste Stencil Design for Notebook Mainboard

Technical Library | 2008-03-18 12:36:31.0

This paper examines the construction of a notebook mainboard with more than 2000 components and no wave soldering required. The board contains standard SMD, chipset BGAs, connectors, through hole components and odd forms placed using full automation and soldered after two reflow cycles under critical process parameters. However, state of the art technology does not help if the process parameters are not set carefully. Can all complex BGAs, THTs and even screws be soldered on a single stencil? What will help us overcome bridging, insufficient solder and thombstoning issues? This paper will demonstrate the placement of all odd shape components using pin-in-paste stencil design and full completion of the motherboard after two reflow cycles.

Vestel Electronic

Position Accuracy Machines for Selective Soldering Fine Pitch Components

Technical Library | 2015-02-27 17:06:01.0

The drive towards fine pitch technology also affects the soldering processes. Selective soldering is a reliable soldering process for THT (through hole) connectors and offers a wide process window for designers. THT connectors can be soldered on the top and bottom side of boards, board in board, PCBs to metal shields or housing out of plastic or aluminum are today's state of the art. The materials that are used to make the solder connections require higher temperatures. Due to the introduction of lead-free alloys, the boards need more heat to get the barrels filled with solder. This not only affects the properties of the flux and components, but the operation temperatures of solder machines become higher (...)First the impact of temperature will be discussed for the separate process steps and for machine tooling. In the experimental part measurements are done to verify the accuracy that can be achieved using today's selective soldering machines. Dedicated tooling is designed to achieve special requirements with respect to component position accuracy.

Vitronics Soltec

Innovative Electroplating Processes for IC Substrates - Via Fill, Through Hole Fill, and Embedded Trench Fill

Technical Library | 2021-06-21 19:34:02.0

In this era of electronics miniaturization, high yield and low-cost integrated circuit (IC) substrates play a crucial role by providing a reliable method of high density interconnection of chip to board. In order to maximize substrate real-estate, the distance between Cu traces also known as line and space (L/S) should be minimized. Typical PCB technology consists of L/S larger than 40 µ whereas more advanced wafer level technology currently sits at or around 2 µm L/S. In the past decade, the chip size has decreased significantly along with the L/S on the substrate. The decreasing chip scales and smaller L/S distances has created unique challenges for both printed circuit board (PCB) industry and the semiconductor industry. Fan-out panel-level packaging (FOPLP) is a new manufacturing technology that seeks to bring the PCB world and IC/semiconductor world even closer. While FOPLP is still an emerging technology, the amount of high-volume production in this market space provide a financial incentive to develop innovative solutions in order to enable its ramp up. The most important performance aspect of the fine line plating in this market space is plating uniformity or planarity. Plating uniformity, trace/via top planarity, which measures how flat the top of the traces and vias are a few major features. This is especially important in multilayer processing, as nonuniformity on a lower layer can be transferred to successive layers, disrupting the device design with catastrophic consequences such as short circuits. Additionally, a non-planar surface could also result in signal transmission loss by distortion of the connecting points, like vias and traces. Therefore, plating solutions that provide a uniform, planar profile without any special post treatment are quite desirable.

MacDermid Inc.

Essentials about Printed Circuit Board Assembly

Technical Library | 2019-10-18 10:37:25.0

It usually does not make any logic to invest in costly fabrication equipment in case you just desire to spin some prototypes and rather outsource your Printed Circuit Board assembly as well as prototype fabrication to a trustworthy vendor. I would provide a few tips as to what to consider when seeking a contract manufacturer. The two most common procedures associated with Printed Circuit Board Assembly are through-hole technology and surface mount technology. Talking about the difference between through-hole technology and surface mount technology. Through-hole elements have metal leads, & these metal leads are supplied through-plated holes inside the circuit board. On the other hand, SMT elements might or might not have leads, nevertheless most significantly, they are developed to be soldered onto the surface of the circuit boards straight on the same side as the element body. A lot of contract manufacturers would provide a quick quote mechanism over their site for the fabrication of circuit boards as well as assembly of prototypes. This would bank your time when comparing various vendors. Ensure that the quote system facilitates you to fill your details, for instance, board material, thickness, copper thickness, milling, etc. in order that you can avail of a precise quote devoid of any surprises afterward. And this is quite necessary. Typically the cost per board would decline as quality upgrades. This is owing to the fairly high setup price of circuit board fabrication over and above component assembly. A few vendors would employ a system where they unite boards from various consumers. This manner the setup price would be circulated among numerous clients. When you fabricate an item, you clearly don’t desire to have to fabricate a big quantity of boards straight away whilst you improve your design. One restriction with small quantity prototypes though is that the option of materials & material thicknesses would be constrained. In case you are employing a particular material then opportunities are there will not be any other clients employing the same material. Additionally, lead time plays a major role in indecisive prices. A longer lead time facilitates the fabricator more liberty in slotting your fabrication. This is basically reflected in cheaper prices that would view in the quote section. Clearly, if you are in a hurry and desire to be moved to the summit of the pile you would require splurging more dollars. Ensure that your contract fabricator would support the file sort for producing which you offer. The most general format for printed circuit board fabrication is the Gerber format nonetheless a few vendors would moreover embrace board files from general printed circuit board software products. A few suppliers also provide in house printed circuit design. Even in case, you create your board yourself, choosing a vendor with design services might prove resourceful in case there is an issue with your files. In this scenario, your vendor could make swift changes that would neglect pricey delays. If you are looking for an Electronic Manufacturing Services (EMS Assembly) provider, then the web is the best to search.

Optima Technology Associates, Inc.

  1 2 Next

through hole insufficient fill searches for Companies, Equipment, Machines, Suppliers & Information

best pcb reflow oven

Wave Soldering 101 Training Course
pressure curing ovens

High Resolution Fast Speed Industrial Cameras.
PCB Handling with CE

Component Placement 101 Training Course
Thermal Interface Material Dispensing

Software for SMT placement & AOI - Free Download.
Fully Automatic BGA Rework Station

Original SMT Feeders and spares for Panasonic, Fuji , Yamaha, Juki , Samsung