Technical Library | 2023-01-17 17:35:07.0
After years of concentration on resolving productivity- related concerns such as increasing speed, consistency and throughput while reducing costs, many of the world's leading electronics manufacturers have added a new mandate to their agendas. They are seeking to minimize the environmental impacts of their assembly processes and final products without sacrificing the high levels of productivity and quality that have been achieved through decades of effort.
Technical Library | 2023-08-16 18:09:06.0
One of our customers involved with Electronics and Aerostructures requested a test to dispense Techspray Wondermask 2204 solder mask. The dispensing locations include large and small screw holes, single through-hole vias, and connector locations consisting of multiple through-hole vias. The process needed to run quickly and reliably.
Technical Library | 2024-02-02 07:48:31.0
Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer In today's rapidly evolving electronics manufacturing landscape, optimizing efficiency, cost-effectiveness, and precision remains paramount. Businesses engaged in producing industrial control boards, computer motherboards, mobile phone motherboards, and mining machine boards face ongoing challenges in streamlining production processes. The integration of expensive equipment strains budgets, making the creation of an efficient, cost-effective high-speed SMT line a daunting task. However, a solution exists that seamlessly combines these elements into a singular, high-performance, and cost-effective SMT line. Let's delve into the specifics. A Comprehensive High-Speed SMT Line Our innovative solution amalgamates two pivotal components: a cutting-edge SMT (Surface Mount Technology) production line and a laser cutting line equipped with a depanelizer. The SMT Production Line The high-speed SMT line comprises several essential components, each fulfilling a unique role in the manufacturing process: 1. PCB Loader: This initial stage involves loading boards onto the production line with utmost care. Our Board Loader prioritizes safety, incorporating various safety light curtains and sensors to promptly halt operations and issue alerts in case of any anomalies. 2. Laser Marking Machine: Every PCB receives a unique two-dimensional code or barcode, facilitating comprehensive traceability. Despite the high-temperature laser process potentially leading to dust accumulation on PCB surfaces, our dedicated PCB Surface Cleaner swiftly addresses this issue. 3. SMT Solder Paste Printer: This stage involves applying solder paste to the boards, a fundamental step in the manufacturing process. 4. SPI (Solder Paste Inspection): Meticulous inspections are conducted at this stage. Boards passing inspection proceed through the NG (No Good) Buffer Conveyor to the module mounters. Conversely, "No Good" results prompt storage of PCBs in the NG Buffer Conveyor, capable of accommodating up to 25 PCBs. Operators can retrieve these NG boards for rework after utilizing our specialized PCB Mis Cleaner to remove solder paste. 5. Module Mounters: These machines excel in attaching small and delicate components, necessitating precision and expertise in the module mounting process. 6. Standard Pick And Place Machines: The selection of these machines is contingent upon your specific BOM (Bill of Materials) list. 7. Pre-Reflow AOI (Automated Optical Inspection): Boards undergo examination for component quality at this stage. Detected issues prompt the Sorting Conveyor to segregate boards for rework. 8. Reflow Oven: Boards undergo reflow soldering, with our Lyra series reflow ovens recommended for their outstanding features, including nitrogen capability, flux recycling, and water cooling function, ensuring impeccable soldering results. 9. Post-Reflow AOI: This stage focuses on examining soldering quality. Detected defects prompt the Sorting Conveyor to segregate boards for further inspection or rework. Any identified defects are efficiently addressed with the BGA rework station, maintaining the highest quality standards. 10. Laser Depanelizer: Boards advance to the laser depanelizer, where precision laser cutting, often employing green light for optimal results, ensures smoke-free, highly accurate separation of boards. 11. PCB Placement Machine: Cut boards are subsequently managed by the PCB Placement Machine, arranging them as required. With this, all high-speed SMT line processes are concluded. Efficiency And Output This production line demonstrates exceptional productivity when manufacturing motherboards with approximately 3000 electronic components, boasting the potential to assemble up to 180 boards within a single hour. Such efficiency not only enhances output but also ensures cost-effectiveness and precision in your manufacturing processes. At I.C.T, we specialize in crafting customized SMT production line solutions tailored to your product and specific requirements. Our equipment complies with European safety standards and holds CE certificates. For inquiries or to explore our exemplary post-sales support, do not hesitate to contact us. The I.C.T team is here to elevate your electronics manufacturing to new heights of efficiency and cost-effectiveness.
Technical Library | 2009-12-14 20:27:54.0
Solder paste is the most recognized form of solder used in electronics assembly today. A surface mount application depends on solder paste to attach the components to the circuit board. However, solder paste may not be the only solution. This is especially true when working with through-hole components or very large devices that require more solder than can be supplied by printed solder paste. In fact, quite often a PCB involves mixed technology that requires more than one form of solder. Solder paste is used for the surface mount components and solder preforms are utilized to attach the leads on through-hole components, avoiding wave or selective soldering.
Technical Library | 2019-10-18 10:37:25.0
It usually does not make any logic to invest in costly fabrication equipment in case you just desire to spin some prototypes and rather outsource your Printed Circuit Board assembly as well as prototype fabrication to a trustworthy vendor. I would provide a few tips as to what to consider when seeking a contract manufacturer. The two most common procedures associated with Printed Circuit Board Assembly are through-hole technology and surface mount technology. Talking about the difference between through-hole technology and surface mount technology. Through-hole elements have metal leads, & these metal leads are supplied through-plated holes inside the circuit board. On the other hand, SMT elements might or might not have leads, nevertheless most significantly, they are developed to be soldered onto the surface of the circuit boards straight on the same side as the element body. A lot of contract manufacturers would provide a quick quote mechanism over their site for the fabrication of circuit boards as well as assembly of prototypes. This would bank your time when comparing various vendors. Ensure that the quote system facilitates you to fill your details, for instance, board material, thickness, copper thickness, milling, etc. in order that you can avail of a precise quote devoid of any surprises afterward. And this is quite necessary. Typically the cost per board would decline as quality upgrades. This is owing to the fairly high setup price of circuit board fabrication over and above component assembly. A few vendors would employ a system where they unite boards from various consumers. This manner the setup price would be circulated among numerous clients. When you fabricate an item, you clearly don’t desire to have to fabricate a big quantity of boards straight away whilst you improve your design. One restriction with small quantity prototypes though is that the option of materials & material thicknesses would be constrained. In case you are employing a particular material then opportunities are there will not be any other clients employing the same material. Additionally, lead time plays a major role in indecisive prices. A longer lead time facilitates the fabricator more liberty in slotting your fabrication. This is basically reflected in cheaper prices that would view in the quote section. Clearly, if you are in a hurry and desire to be moved to the summit of the pile you would require splurging more dollars. Ensure that your contract fabricator would support the file sort for producing which you offer. The most general format for printed circuit board fabrication is the Gerber format nonetheless a few vendors would moreover embrace board files from general printed circuit board software products. A few suppliers also provide in house printed circuit design. Even in case, you create your board yourself, choosing a vendor with design services might prove resourceful in case there is an issue with your files. In this scenario, your vendor could make swift changes that would neglect pricey delays. If you are looking for an Electronic Manufacturing Services (EMS Assembly) provider, then the web is the best to search.
Technical Library | 2011-03-10 18:59:02.0
History shows that the electronics assembly industry is always up for a good challenge. This was proven with the successful move from through-hole to SMT assembly, the elimination of CFCs from the cleaning process and implementation of lead
Technical Library | 2019-10-10 00:26:28.0
Voids are a plague to our electronics and must be eliminated! Over the last few years we have studied voiding in solder joints and published three technical papers on methods to "Fill the Void." This paper is part four of this series. The focus of this work is to mitigate voids for via in pad circuit board designs. Via holes in Quad Flat No-Lead (QFN) thermal pads create voiding issues. Gasses can come out of via holes and rise into the solder joint creating voids. Solder can also flow down into the via holes creating gaps in the solder joint. One method of preventing this is via plugging. Via holes can be plugged, capped, or left open. These via plugging options were compared and contrasted to each other with respect to voiding. Another method of minimizing voiding is through solder paste stencil design. Solder paste can be printed around the via holes with gas escape routes. This prevents gasses from via holes from being trapped in the solder joint. Several stencil designs were tested and voiding performance compared and contrasted. In many cases voiding will be reduced only if a combination of mitigation strategies are used. Recommendations for combinations of via hole plugging and stencil design are given. The aim of this paper is to help the reader to "Fill the Void."
Technical Library | 1999-05-06 15:36:33.0
The success of surface-mount technology has not meant the end of through-hole connectors. For reasons ranging from availability to user concerns over reliability, through-hole connectors remain widely used.
Technical Library | 2020-07-15 18:49:03.0
Via Filling • Through Hole Vias - IPC-4761 – Plugging – Filling – Filled & Capped • MicroviaFilling and Stacked Vias
Technical Library | 2023-06-12 16:52:47.0
The technological advancement of component and PCB technology from through-hole to surface mount (SMT) is a major factor in the miniaturization of today's electronics. Smaller and smaller component sizes and more densely packed PCBs lead to more powerful designs in much smaller product packages. With advancement, however, comes a new set of challenges in building these smaller, more complex assemblies. This is the challenge original equipment manufacturers (OEM) and contract manufacturers (CM) face today.