Technical Library: through hole solder void (Page 1 of 4)

Selective Solder Fine Pitch Components On High Thermal Mass Assembly

Technical Library | 2020-04-14 15:49:38.0

The number of through-hole components on printed circuit boards (PCB) has declined significantly over the last decade. Miniaturization in electronics has resulted in less THT (through-hole technology) and leads with a finer pitch. For this reason, the soldering of these components has also changed from wave soldering to Point-to-point selective soldering. Soldering these small, fine-pitch components is a challenge when surface mount components (SMD) are positioned very close to THT components on the PCB layout. This study, done in cooperation with a large automotive EMS customer, defines the process windows for through-hole technology for fine-pitch components. It determines what is feasible to solder and defines layout design parameter that make soldering possible with SMD areas and other components on the assembly.

ITW EAE

Reliable Selective Soldering For High Volume Assemblies

Technical Library | 2020-04-14 16:00:20.0

The number of through hole connections on a circuit assembly are decreasing with the drive toward miniaturization. When these assemblies are manufactured in high volumes the most convenient method is selective soldering. Although selective soldering is very well introduced in automotive and industrial applications it can also be a very efficient method to solder high volume consumer products.

ITW EAE

Selective Soldering and the Modular Approach

Technical Library | 2019-08-08 10:23:51.0

High mix production is the mainstay of many electronics assembly plants. Lot sizes and board complexities vary and the boards are often mixed technology, comprising a blend of both surface mount and through-hole technology. Modularizing a production line enables a clear distinction between one type of assembly process and another. This article assumes a modern factory where a job can be routed to the selective soldering machine module, the hand assembly bench, or a combination of both. The decision rules of routing a circuit board through hand assembly versus automated selective soldering are discussed. Hand assembly soldering operations require no explanation.

ACI Technologies, Inc.

Investigation of Through-Hole Capacitor Parts Failures Following Vibration and Stress Testing

Technical Library | 2019-06-21 10:39:15.0

Recently, an ACI Technologies (ACI) customer called to discuss failures that they had observed with some through-hole capacitor parts. The components were experiencing failures following vibration and accelerated stress testing. Upon receipt of the samples, ACI performed three levels of inspection and Energy Dispersive Spectroscopy (EDS) testing to investigate the root cause of the failures. These analyses enabled ACI to verify the elements comprising the solder joints and make the following recommendations in order to prevent future occurrences. The first inspection was to investigate the capacitor leads using optical microscopy, and no anomalies were found that could indicate bad parts from the vendor or improper handling prior to assembly. However, vertical fill in the barrel of the plated through-holes was too close to the IPC-A-610 minimum specification of 75% to determine a pass/fail condition, and therefore required further investigation.

ACI Technologies, Inc.

Micro-Sectioning of PCBs for Failure Analysis

Technical Library | 2010-01-13 12:34:10.0

Micro-sectioning (sometimes referred to as cross-sectioning)is a technique, used to characterize materials or to perform a failure mode analysis, for exposing an internal section of a PCB or package. Destructive in nature, cross-sectioning requires encapsulation of the specimen in order to provide support, stability, and protection. Failures that can be investigated through micro-sectional analysis include component defects, thermo-mechanical failures, processing failures related to solder reflow, opens or shorts, voiding and raw material evaluations.

BEST Inc.

Fill the Void IV: Elimination of Inter-Via Voiding

Technical Library | 2019-10-10 00:26:28.0

Voids are a plague to our electronics and must be eliminated! Over the last few years we have studied voiding in solder joints and published three technical papers on methods to "Fill the Void." This paper is part four of this series. The focus of this work is to mitigate voids for via in pad circuit board designs. Via holes in Quad Flat No-Lead (QFN) thermal pads create voiding issues. Gasses can come out of via holes and rise into the solder joint creating voids. Solder can also flow down into the via holes creating gaps in the solder joint. One method of preventing this is via plugging. Via holes can be plugged, capped, or left open. These via plugging options were compared and contrasted to each other with respect to voiding. Another method of minimizing voiding is through solder paste stencil design. Solder paste can be printed around the via holes with gas escape routes. This prevents gasses from via holes from being trapped in the solder joint. Several stencil designs were tested and voiding performance compared and contrasted. In many cases voiding will be reduced only if a combination of mitigation strategies are used. Recommendations for combinations of via hole plugging and stencil design are given. The aim of this paper is to help the reader to "Fill the Void."

FCT ASSEMBLY, INC.

An investigation into low temperature tin-bismuth and tin-bismuth-silver lead-free alloy solder pastes for electronics manufacturing applications

Technical Library | 2013-01-24 19:16:35.0

The electronics industry has mainly adopted the higher melting point Sn3Ag0.5Cu solder alloys for lead-free reflow soldering applications. For applications where temperature sensitive components and boards are used this has created a need to develop low melting point lead-free alloy solder pastes. Tin-bismuth and tin-bismuth-silver containing alloys were used to address the temperature issue with development done on Sn58Bi, Sn57.6Bi0.4Ag, Sn57Bi1Ag lead-free solder alloy pastes. Investigations included paste printing studies, reflow and wetting analysis on different substrates and board surface finishes and head-in-pillow paste performance in addition to paste-in-hole reflow tests. Voiding was also investigated on tin-bismuth and tin-bismuth-silver versus Sn3Ag0.5Cu soldered QFN/MLF/BTC components. Mechanical bond strength testing was also done comparing Sn58Bi, Sn37Pb and Sn3Ag0.5Cu soldered components. The results of the work are reported.

Christopher Associates Inc.

Solder Volumes for Through-Hole Reflow-Compatible Connectors

Technical Library | 1999-05-06 15:36:33.0

The success of surface-mount technology has not meant the end of through-hole connectors. For reasons ranging from availability to user concerns over reliability, through-hole connectors remain widely used.

TE Connectivity

Effect Of Voids On Thermo-Mechanical Reliability of Solder Joints

Technical Library | 2019-10-16 23:18:15.0

Despite being a continuous subject of discussion, the existence of voids and their effect on solder joint reliability has always been controversial. In this work we revisit previous works on the various types of voids, their origins and their effect on thermo-mechanical properties of solder joints. We focus on macro voids, intermetallics micro voids, and shrinkage voids, which result from solder paste and alloy characteristics. We compare results from the literature to our own experimental data, and use fatigue-crack initiation and propagation theory to support our findings. Through a series of examples, we show that size and location of macro voids are not the primary factor affecting solder joint mechanical and thermal fatigue life. Indeed, we observe that when these voids area conforms to the IPC-A-610 (D or F) or IPC-7095A standards, macro voids do not have any significant effect on thermal cycling or drop shock performance.

Alpha Assembly Solutions

Stencil Design For Mixed Technology Through-Hole / Smt Placement And Reflow

Technical Library | 2023-06-12 18:52:18.0

This paper will review stencil design requirements for printing solder paste around and in through-hole pads / openings. There is much interest in this procedure since full implementation allows the placement of both through-hole components as well as SMD's and the subsequent reflow of both simultaneously. This in turn eliminates the need to wave solder or hand solder through-hole components.

Photo Stencil LLC

  1 2 3 4 Next

through hole solder void searches for Companies, Equipment, Machines, Suppliers & Information

Best SMT Reflow Oven

World's Best Reflow Oven Customizable for Unique Applications
Solder Paste Dispensing

High Throughput Reflow Oven
PCB Handling Machine with CE

High Precision Fluid Dispensers
2024 Eptac IPC Certification Training Schedule

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.