Technical Library: time out (Page 1 of 3)

Throughput vs. Wet-Out Area Study for Package on Package (PoP) Underfill Dispensing

Technical Library | 2012-12-17 22:05:22.0

Package on Package (PoP) has become a relatively common component being used in mobile electronics as it allows for saving space in the board layout due to the 3D package layout. To insure device reliability through drop tests and thermal cycling as well as for protecting proprietary programming of the device either one or both interconnect layers are typically underfilled. When underfill is applied to a PoP, or any component for that matter, there is a requirement that the board layout is such that there is room for an underfill reservoir so that the underfill material does not come in contact with surrounding components. The preferred method to dispensing the underfill material is through a jetting process that minimizes the wet out area of the fluid reservoir compared to traditional needle dispensing. To further minimize the wet out area multiple passes are used so that the material required to underfill the component is not dispensed at once requiring a greater wet out area. Dispensing the underfill material in multiple passes is an effective way to reduce the wet out area and decrease the distance that surrounding components can be placed, however, this comes with a process compromise of additional processing time in the underfill dispenser. The purpose of this paper is to provide insight to the inverse relationship that exists between the wet out area of the underfill reservoir and the production time for the underfill process.

ASYMTEK Products | Nordson Electronics Solutions

BGA Reballing

Technical Library | 2019-05-30 10:59:13.0

In the current economic environment, the ability to reuse ball grid array(BGA) components that have failed due to solder defects may be an efficient way for electronics manufacturers to reduce costs. Cost may not be the only driving factor in the decision to engage in this recycling practice. The increasing demands placed upon the complexity of microprocessors and integrated circuits (ICs) has decreased the availability of some components, and increased their lead time. Because of this, reballing may provide a means to meet schedule, reduce rework turn-around time, and give a manufacturer a decisive advantage over other companies in an ever increasingly competitive market. This article will discuss the process of reballing BGA components (Figure 1), examining preparation (the preform method, the screen method), and cleaning and bake-out.

ACI Technologies, Inc.

ICT-T550 Revolutionizes SMT PCB Coating in Industry 4.0

Technical Library | 2023-11-22 09:17:49.0

In the dynamic realm of Industry 4.0, I.C.T introduces the I.C.T-T550 SMT PCB coating machine, a pioneering addition designed to meet the evolving needs of modern manufacturing. This advanced equipment is equipped with features that not only boost productivity but also prioritize precise and consistent coating quality. Let's delve into the crucial attributes that establish the I.C.T-T550 as a vital component in your production process. 1. Automated Precision for Coating Consistency The I.C.T-T550 PCB Coating Machine integrates an automated pressure regulation system for both dispensing valve and pressure tank, equipped with precision regulators and digital gauges. This ensures a consistent coating process, optimizing precision. 2. Front-End Accessibility for Operational Efficiency Located at the front end, power supply and air pressure adjustments are easily accessible, streamlining control. This user-friendly design enhances operator workflow efficiency. 3. Durable Material Transport The open-material transport rail undergoes hardening treatment and utilizes a specialized stainless steel chain drive, ensuring both longevity and reliable material transport. 4. Track Width Adjustment for Trouble-Free Operation Track width adjustment is achieved through a synchronous belt drive mechanism, ensuring prolonged and trouble-free operation. 5. CNC Machined Frame for Unparalleled Precision The machine's frame, subjected to CNC machining, features an independent, all-steel gantry frame, ensuring the parallel alignment of tracks and axes. 6. Workshop Environment Enhancement To ensure a cleaner and safer workspace, the equipment features air curtains at the track entrance and exit, preventing fumes from escaping. It also includes a dedicated exhaust outlet, improving overall workshop air quality. 7. Intuitive Programming and Visualization The I.C.T-T550 PCB Coating Machine allows flexible coating path editing through intuitive programming. The equipment employs a teach mode for programming, offering a visual interface for coating path design. 8. User-Friendly Interface with Practical Design Featuring a user-friendly interface with fault alerts and menu displays, the I.C.T-T550 delivers a sleek and practical design. 9. Streamlined Repetition and Data Management Efficiency is paramount, and the I.C.T-T550 offers the ability to mirror, array, and replicate coating paths, simplifying the process, especially with multiple boards. 10. Real-Time Data Monitoring The equipment automatically collects and displays data, including production volume and individual product work times, enabling effective production performance tracking. 11. Smart Adhesive Management The I.C.T-T550 intelligently monitors adhesive levels, providing automatic alerts for replenishment, ensuring uninterrupted coating. In summary, the I.C.T SMT PCB coating machine seamlessly combines precision, automation, and smart features to meet the demands of Industry 4.0. With integration into MES systems, it provides a reliable and efficient solution for elevating PCB coating processes. The I.C.T-T550's adherence to European safety standards and CE certification underscores our commitment to safety and compliance. For further inquiries or information about additional safety standards, please contact us. Whether optimizing coating quality or enhancing factory productivity, the I.C.T-T550 marks a step into the future of intelligent manufacturing. Explore a variety of coating valves or seek guidance by reaching out to us.

I.C.T ( Dongguan Intercontinental Technology Co., Ltd. )

Hand Printing using Nanocoated and other High End Stencil Materials

Technical Library | 2019-05-29 23:10:30.0

There are times when a PCB prototype needs to be built quickly to test out a design. In such cases where it is known early on that there will be multiple iterations or that a "one and done" assembly will be made that there will be some SMT assemblers who choose to hand print solder paste onto the board using a "frameless" stencil. In such cases where hand printing is used, the consistency of the printing technique has typically been in question. Furthermore, the effectiveness of both the nanocoatings as well as the higher end stainless steel materials, which have been heretofore studied in controlled printing environments, will be evaluated for their impact on the hand printing process.The purpose of the study was to determine the effectiveness of select nanocoating materials as well as certain high end stainless steel stencil materials as they relate to the manual SMT printing process. A variety of nanocoatings were applied to SMT metal stencils and solder paste volume measurements were taken to compare the effectiveness.

BEST Inc.

How to inspect the temperature recovering time of thermal shock chamber?

Technical Library | 2019-11-12 02:09:22.0

Thermal shock test chamber can be used for testing the chemical change or physical damage on composite materials caused by the thermal expansion and contraction of the sample in the shortest time,which is subjected to extremely and continuous high and low temperature environment.so how to check the temperature recovery time of this chamber? Normally we take following steps to inspect the temepratuire recovering time: 1.Install the temperature sensor at the specified position, and adjust the temperature controller of hot zone and cold zone to the required nominal temperature respectively. 2.The temperature increases and reduces respectively,30min after temperature in two zones reach stable status,record temperature value of the measuring point,pls set the temperature value of two zones to be required nominal temperature. 3.The temperature shock test chamber automatically places the inspected load into theh ot zone,select the corresponding retention time according to regulated standard. 4.Set the transfer time,then the inspection load is transferred from hot zone to cold zone, and the temperature of the measuring point is observed and recorded, and then the reverse conversion of the load from cold zone to hot zone is carried out according to the same method, and the temperature of the measuring point is observed and recorded. www.climatechambers.com

Symor Instrument Equipment Co.,Ltd

Handling of Highly-Moisture Sensitive Components - An Analysis of Low-Humidity Containment and Baking Schedules

Technical Library | 2022-09-12 14:07:47.0

Unique component handling issues can arise when an assembly factory uses highly-moisture sensitive surface mount devices (SMDs). This work describes how the distribution of moisture within the molded plastic body of a SMD is an important variable for survivability. JEDEC/IPC [1] moisture level rated packages classified as Levels 4-5a are shown to require additional handling constraints beyond the typical out-of-bag exposure time tracking. Nitrogen or desiccated cabinet containment is shown as a safe and effective means for long-term storage provided the effects of prior out-of-bag exposure conditions are taken into account. Moisture diffusion analyses coupled with experimental verification studies show that time in storage is as important a variable as floor-life exposure for highly-moisture sensitive devices. Improvements in floor-life survivability can be obtained by a handling procedure that includes cyclic storage in low humidity containment. SMDs that have exceeded their floor-life limits are analyzed for proper baking schedules. Optimized baking schedules can be adopted depending on a knowledge of the exposure conditions and the moisture sensitivity level of the device.

Alcatel-Lucent

What causes temperature humidity chamber to alarm?

Technical Library | 2019-12-12 02:43:44.0

Today we discuss the reason that causes temperature humidity chamber to alarm,In most cases, the equipment alarm is caused by the improper operation in the process of use, which mainly includes following reasons:that are refrigeration system, temperature system and circulating system. First, Refrigeration system 1, refrigeration compressor overpressure alarm. If the refrigerant pressure exceeds the set value, it will stop and alarm at the same time. At this time, the fault must be eliminated and then manually reset. 2, short phase power supply, phase sequence alarm. When the external power supply of the equipment is out of phase or the phase sequence is changed, it will stop and alarm at the same time. 3. The circulating cooling water is short of water to alarm. When the water pressure of the cooling circulating water system is insufficient, it will stop and alarm at the same time, and it must wait for the fault to be eliminated and reset at the same time before it could run normally. 4, refrigeration compressor overheating alarm. When the coil of the compressor is overheated and the power supply of the line is not normal, it will stop and alarm at the same time. Second, Temperature system 1, the overtemperature alarm in the chamber. The sensors in the channel and the sample area are equipped with overtemperature protection devices, and there are also overtemperature protecter on the control panel. When the temperature in the working chamber exceeds the setting value on the controller, it will stop and alarm. 2. sample overtemperature protection. When the temperature in the sample area exceeds the protection temperature set by the controller, it will stop and alarm at the same time. The overtemperature protection of the sample is divided into upper limit protection and lower limit protection, which can be set according to the demand, Third,Circulating system 1. The alarm is caused by the overheating of the circulating fan. When the coil of the fan is over-heated, the alarm will be stopped at the same time. 2. The fan over-current alarm. When the current of the fan exceeds the allowable value, the alarm is stopped at the same time, and the normal operation can only be carried out after the fault maintenance of the overcurrent is completed. This is what we talk about today,if you have more questions,let us know.

Symor Instrument Equipment Co.,Ltd

Simple, Effective Process Control in Wave Soldering

Technical Library | 1999-06-23 20:29:21.0

This paper outlines the harmful effects of out-of-control process parameters and describes methods of measuring and tracking them to keep them in control. It addresses all critical variables of wave soldering: flux deposition, preheat application, conveyor speed, solder temperature and solder contact time.

Siemens Process Industries and Drives

101 EMI Shielding Tips and Tricks

Technical Library | 2020-07-02 13:16:32.0

Principle of shielding 1 The principle of shielding is creating a conductive layer completely surrounding the object you want to shield. This was invented by Michael Faraday and this system is known as a Faraday Cage. 2 Ideally, the shielding layer will be made up of conductive sheets or layers of metal that are connected by means of welding or soldering, without any interruptions. The shielding is perfect when there is no difference in conductivity between the used materials. When dealing with frequencies below 30 MHz, the metal thickness affects shielding effectiveness. We also offer a range of shielding methods for plastic enclosures. A complete absence of interruptions is not a realistic goal since the Faraday cage will have to be opened from time to time so electronics, equipment or people can be moved in or out. Openings are also needed for displays, ventilation, cooling, power supply, signals etc. 3 Shielding works in both directions, items inside the shielded room are shielded from outside influences. (Fig. 3.1)

Holland Shielding Systems BV

QPlan - NPI Tools included

Technical Library | 2018-10-29 05:03:59.0

We found that NPI process of SMT is mostly similar and sometimes overlapping to tooling process. In addition, in most cases the programmer is part of the team working on the NPI process. So, QPlan was extended with NPI Tools as a part of tooling process. This allows the team to carry out the NPI process at offline. And at the end of it, they can create corrected SMT program at zero time.

Proventus Technologies

  1 2 3 Next

time out searches for Companies, Equipment, Machines, Suppliers & Information