Technical Library | 2023-01-17 17:27:13.0
Reflow profile has significant impact on solder joint performance because it influences wetting and microstructure of the solder joint. The degree of wetting, the microstructure (in particular the intermetallic layer), and the inherent strength of the solder all factor into the reliability of the solder joint. This paper presents experimental results on the effect of reflow profile on both 63%Sn 37%Pb (SnPb) and 96.5%Sn 3.0%Ag 0.5%Cu (SAC 305) solder joint shear force. Specifically, the effect of the reflow peak temperature and time above solder liquidus temperature are studied. Nine reflow profiles for SAC 305 and nine reflow profiles for SnPb have been developed with three levels of peak temperature (230 o C, 240 o C, and 250 o C for SAC 305; and 195 o C, 205 o C, and 215 o C for SnPb) and three levels of time above solder liquidus temperature (30 sec., 60 sec., and 90 sec.). The shear force data of four different sizes of chip resistors (1206, 0805, 0603, and 0402) are compared across the different profiles. The shear force of the resistors is measured at time 0 (right after assembly). The fracture surfaces have been studied using a scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS)
Technical Library | 2023-01-17 17:50:59.0
Heller's new Condenser Tube Flux Recovery System is designed to provide more efficient flux collection than earlier Heller flux collection systems; while providing minimal down time for inspection and cleaning. The entire system easily fits within the rear of the top shell of an 1800-EXL oven. The system utilizes a different set of top shell caps specially designed to provide the best serviceability of both the flux collection system and maintenance of the heater zone blower motors.
Technical Library | 2019-07-10 23:36:14.0
Pockets of gas, or voids, trapped in the solder interface between discrete power management devices and circuit assemblies are, unfortunately, excellent insulators, or barriers to thermal conductivity. This resistance to heat flow reduces the electrical efficiency of these devices, reducing battery life and expected functional life time of electronic assemblies. There is also a corresponding increase in current density (as the area for current conduction is reduced) that generates additional heat, further leading to performance degradation.
Technical Library | 2023-09-15 10:03:06.0
Enhance PCB assembly quality with our DIP Line Online PCBA AOI solution. Detect defects in real-time, streamline your production, and ensure top-notch quality assurance for your electronic components.
Technical Library | 2023-09-15 11:39:37.0
Discover the efficiency of our state-of-the-art inline PCBA router machine. Streamline your PCB assembly process with precision and speed. Get high-quality PCBs in less time.
Technical Library | 2023-09-16 06:04:19.0
Off-line selective wave soldering machines are the best way to solder complex PCBs. They allow you to solder only the components that need to be soldered, saving time and material.
Technical Library | 2023-09-15 10:05:59.0
Elevate your electronics manufacturing with SMT Online AOI. Achieve real-time quality control, defect detection, and production efficiency optimization with our advanced automated optical inspection system. Improve your production process and ensure top-notch quality with SMT Online AOI technology.
Technical Library | 2023-09-15 10:03:54.0
Achieve thorough quality control with our DIP On-line Dual Side PCBA AOI system. Detect defects on both sides of PCBAs in real-time, ensuring impeccable quality and production efficiency. Elevate your electronic manufacturing process today.
Technical Library | 2024-06-20 22:53:23.0
A leading electronic hearing device manufacturer reduced UV precise coating cycle time by 79% with advanced automation. A manual process of hand brushing UV coating onto components was replaced by an automated solution from Nordson to increase production volumes, improve quality, and reduce costs for this complex application. Download the paper to learn the details of the application.
Technical Library | 2012-12-17 22:05:22.0
Package on Package (PoP) has become a relatively common component being used in mobile electronics as it allows for saving space in the board layout due to the 3D package layout. To insure device reliability through drop tests and thermal cycling as well as for protecting proprietary programming of the device either one or both interconnect layers are typically underfilled. When underfill is applied to a PoP, or any component for that matter, there is a requirement that the board layout is such that there is room for an underfill reservoir so that the underfill material does not come in contact with surrounding components. The preferred method to dispensing the underfill material is through a jetting process that minimizes the wet out area of the fluid reservoir compared to traditional needle dispensing. To further minimize the wet out area multiple passes are used so that the material required to underfill the component is not dispensed at once requiring a greater wet out area. Dispensing the underfill material in multiple passes is an effective way to reduce the wet out area and decrease the distance that surrounding components can be placed, however, this comes with a process compromise of additional processing time in the underfill dispenser. The purpose of this paper is to provide insight to the inverse relationship that exists between the wet out area of the underfill reservoir and the production time for the underfill process.