Technical Library: tin plating equipment (Page 1 of 2)

Keeping Tin Solderable

Technical Library | 1999-05-06 15:31:13.0

Tin plating on a component lead makes its soldering easier. Everybody knows that. Not so well known is that tin plating has shelf life -- its ability to be easily soldered degrades over time. the speed and severity of degradation depends both on storage conditions and on the plating itself...

TE Connectivity

Tin Whisker Risk Management by Conformal Coating

Technical Library | 2015-10-22 17:37:28.0

The objective of this study is to evaluate conformal coatings for mitigation of tin whisker growth. The conformal coatings chosen for the experiment are acrylic, polyurethane and parylene. Also included in this paper are tin whisker inspection results of tin-plated braiding and wire that was exposed to an environment of 50°C with 50% relative humidity for over five years.

Lockheed Martin Corporation

Tin Whisker Risk Mitigation for High-Reliability Systems Integrators and Designers

Technical Library | 2015-06-04 19:10:47.0

Integrators and designers of high-reliability systems exert little or no control over component-level plating processes that affect the propensity for tin whiskering. Challenges of how to assure long-term reliability, while continuing to use COTS parts plated with pure tin, continue to arise. An integrated, quantitative, standardized methodology is proposed whereby mitigation levels can be selected that are appropriate for specific applications of pure tin for given end-uses. A system of hardware end-use classification is proposed, together with recommended appropriate risk mitigation approaches. An updated version of the application-specific risk assessment algorithm is presented together with recommended thresholds for acceptability within the context of the hardware classifications.

Raytheon

Effects of Tin Whisker Formation on Nanocrystalline Copper

Technical Library | 2023-02-13 19:23:18.0

Spontaneously forming tin whiskers, which emerge unpredictably from pure tin surfaces, have regained prevalence as a topic within the electronics research community. This has resulted from the ROHS-driven conversion to "lead-free" solderable finish processes. Intrinsic stresses (and/or gradients) in plated films are considered to be a primary driving force behind the growth of tin whiskers. This paper compares the formation of tin whiskers on nanocrystalline and conventional polycrystalline copper deposits. Nanocrystalline copper under-metal deposits were investigated, in terms of their ability to mitigate whisker formation, because of their fine grain size and reduced film stress. Pure tin films were deposited using matte and bright electroplating, electroless plating, and electron beam evaporation. The samples were then subjected to thermal cycling conditions in order to expedite whisker growth. The resultant surface morphologies and whisker formations were evaluated.

Johns Hopkins Applied Physics Laboratory

A New (Better) Approach to Tin Whisker Mitigation

Technical Library | 2011-03-03 16:54:47.0

Most of the electronics industry by now knows about tin whiskers. They know whiskers are slim metallic filaments that emanate from the surface of tin platings. They know these filaments are conductive and can cause shorts across adjacent conductors. And they know that these shorts can cause some really bad failures (see nepp.nasa.gov/whisker/ for a list longer than you need). But, with all of this knowledge, the industry is still struggling on how to predict and prevent these "Nefarious Needles of Pain".

DfR Solutions (acquired by ANSYS Inc)

Intermetallic Growth in Tin-Rich Solders

Technical Library | 2017-06-13 17:14:59.0

For tin-rich solder alloys, 200 C (392 F) is an extreme temperature. Intermetallic growth in tin-copper systems is known to occur and is believed to bear a direct relationship to failure mechanisms. This study of morphological changes with time at elevated temperatures was made to determine growth rates of tin-copper intermetallics. Preferred growth directions, rates of thickening, and notable changes in morphology were observed.Each of four tin-base alloys was flowed on copper and exposed to temperatures between 100 C and 200 C for time periods of up to 32 days. Metallographic sections were taken and the intermetallics were examined. Intermetallic layer thickening is characterized by several distinct stages. The initial growth of side plates is extremely rapid and exaggerated. This is followed by retrogression (spheroidization) of the elongated peaks and by general thick-

General Electric

The Relationship between Backward Compatible Assembly and Microstructure on the Thermal Fatigue Reliability of an Extremely Large Ball Grid Array

Technical Library | 2012-06-21 23:06:06.0

First published in the 2012 IPC APEX EXPO technical conference proceedings. Most high reliability electronic equipment producers continue to manufacture and support tin-lead (SnPb) electronic products despite the increasing trend for design and conversion

Alcatel-Lucent

OOOH Colors, It Must Be Lead Free

Technical Library | 2014-06-23 14:50:52.0

It was unusual to see chip terminations change colors when tin lead solders were used but with the introduction of lead free reflow soldering and the corresponding increases in reflow temperatures terminations are now changing colors. Two conditions are present when reflow temperatures are increased for lead free solder alloys that leads to discoloration. Reflow temperatures are above the melting point of tin (Sn MP is 232oC). Air temperatures commonly used in forced convection reflow systems are high enough to both melt the tin plating on the termination allowing it to be pulled into the solder joint due to solder joint liquid solder surface tension leaving behind the exposed nickel barrier. Now those metal oxide colors will be visible due to high air temperatures during reflow.

Johanson Dielectrics, Inc.

Soldering to Gold Over Nickel Surfaces

Technical Library | 1999-05-07 11:28:39.0

There are many things that can go wrong when soldering to gold plate over nickel surfaces. First of all, we know that gold and solder are not good friends, as any time solder comes into contact with gold, something seems to go wrong. Either the solder bonds to the gold and eventually pulls off as the tin and gold cross-migrate, leaving voids; or the solder completely removes the gold and is expected to bond to the metal which was under the gold.

Kester

Liquid Tin Corrosion and Lead Free Wave Soldering

Technical Library | 2008-02-12 22:52:41.0

Corrosion of solder pots and solder pot components in wave soldering equipment has been reduced with the introduction of corrosion resistant coatings and improved lead free solder alloys. The latest trends in protecting wave solder machine components from liquid metal corrosion by lead free solder alloys will be presented in order to provide guidelines for evaluating existing equipment as well as for purchasing new systems.

Speedline Technologies, Inc.

  1 2 Next

tin plating equipment searches for Companies, Equipment, Machines, Suppliers & Information

ChuangWei Electronic Equipment Manufactory Ltd.
ChuangWei Electronic Equipment Manufactory Ltd.

Good day! We have more than 21 years in the design and manufacturing of full and semi-auto PCB router and laser Separator and soldering machine. S1@smtfly.com

Manufacturer / Consultant / Service Provider

3F, Building E, Tongjin High-tech Park, Guan chang Road, Dalingshan Town, Dongguan City, Guangdong Province, China
Dongguan, China

Phone: 86-18128590884

2024 Eptac IPC Certification Training Schedule

Training online, at your facility, or at one of our worldwide training centers"
Electronics Equipment Consignment

World's Best Reflow Oven Customizable for Unique Applications
Sell Your Used SMT & Test Equipment

High Precision Fluid Dispensers
SMT feeders

Wave Soldering 101 Training Course
design with ease with Win Source obselete parts and supplies

PCB Reverse Engineering, Redesign, & Repair Services & Equipment