Technical Library | 2022-08-02 17:35:18.0
Saving resources in electronics manufacturing is not an end in itself. It is closely linked with reducing costs and gaining a competitive advantage. However, innovative adhesion and potting technologies in combination with highly functional adhesives and potting media make a significant contribution to the ideal union between economic performance and a reduced ecological footprint.
Technical Library | 2022-10-31 08:39:26.0
Minimum Order Quantity: 1/pcs Price: Negotiable,EXW Price Packaging Details: High quality carton packaging Delivery Time: 1-2 work days Payment Terms: L/C, D/A, D/P, T/T, Western Union, MoneyGram Supply Ability: 1000pcs monthly, delivery time 1-2 days
Technical Library | 2022-10-31 08:40:27.0
Minimum Order Quantity: 1/pcs Price: Negotiable,EXW Price Packaging Details: High quality carton packaging Delivery Time: 1-2 work days Payment Terms: L/C, D/A, D/P, T/T, Western Union, MoneyGram Supply Ability: 1000pcs monthly, delivery time 1-2 days
Technical Library | 2022-10-31 09:21:53.0
Minimum Order Quantity: 1/pcs Price: Negotiable,EXW Price Packaging Details: High quality carton packaging Delivery Time: 1-2 work days Payment Terms: L/C, D/A, D/P, T/T, Western Union, MoneyGram Supply Ability: 1000pcs monthly, delivery time 1-2 days
Technical Library | 2021-04-08 00:34:16.0
Creep corrosion is not a new phenomenon, it has become more prevalent since the enactment of the European Union's Restriction of Hazardous Substance (RoHS) Directive on 1 July 2006. The directive bans the use of lead and other hazardous substances in products (where lead-based surface finishes offered excellent corrosion resistance). The higher melting temperatures of the lead-free solders and their poor wetting of copper metallization on PCBs forced changes to PCB laminates, surface finishes and processing temperature-time profiles. As a result, printed circuit boards might have higher risk of creep corrosion.
Technical Library | 2013-08-22 14:28:58.0
Tin-rich solders are widely applied in the electronic industry in the majority of modern printed circuit boards (PCBs). Because the use of lead-tin solders has been banned in the European Union since 2006, the problem of the bridging of adjacent conductors due to tin whisker growth (limited before by the addition of Pb) has been reborn. In this study tin alloys soldered on glass-epoxy laminate (typically used for PCBs) are considered. Scanning ion microscopy with Focused Ion Beam (FIB) system and energy-dispersive X-ray spectroscopy (EDXS) were used to determine correlations between spatial non-uniformities of the glass-epoxy laminate, the distribution of intermetallic compounds and whisker growth.
Technical Library | 2008-08-14 20:48:12.0
The Restriction of Hazardous Substances (RoHS) regulations of the European Union, and similar regulations being enacted around the world, require the virtual elimination of lead (Pb), mercury (Hg), cadmium (Cd), hexavalent chromium (Cr6), polybrominated biphenyls (PBB) or polybrominated diphenyl ethers (PBDE) from electronic products. Allowable concentration levels in any homogeneous material contained within a product are extremely low: 0.01% for Cd and 0.1% for other substances by weight. The most significant issue affecting the practical validation of RoHS compliance in the day-to-day assembly environment is ensuring that no restricted substances, especially tin-lead (SnPb) materials, have inadvertently entered into the production stream.
Technical Library | 2015-01-08 17:26:59.0
Regardless of the accelerating trend for design and conversion to Pb-free manufacturing, many high reliability electronic equipment producers continue to manufacture and support tin-lead (SnPb) electronic products. Certain high reliability electronic products from the telecommunication, military, and medical sectors manufacture using SnPb solder assembly and remain in compliance with the RoHS Directive (restriction on certain hazardous substances) by invoking the European Union Pb-in-solder exemption. Sustaining SnPb manufacturing has become more challenging because the global component supply chain is converting rapidly to Pb-free offerings and has a decreasing motivation to continue producing SnPb product for the low-volume, high reliability end users. Availability of critical, larger SnPb BGA components is a growing concern
Technical Library | 2020-10-27 02:07:31.0
For companies that choose to take the Pb-free exemption under the European Union's RoHS Directive and continue to manufacture tin-lead (Sn-Pb) electronic products, there is a growing concern about the lack of Sn-Pb ball grid array (BGA) components. Many companies are compelled to use the Pb-free Sn-Ag-Cu (SAC) BGA components in a Sn-Pb process, for which the assembly process and solder joint reliability have not yet been fully characterized. A careful experimental investigation was undertaken to evaluate the reliability of solder joints of SAC BGA components formed using Sn-Pb solder paste. This evaluation specifically looked at the impact of package size, solder ball volume, printed circuit board (PCB) surface finish, time above liquidus and peak temperature on reliability. Four different BGA package sizes (ranging from 8 to 45 mm2) were selected with ball-to-ball pitch size ranging from 0.5mm to 1.27mm. Two different PCB finishes were used: electroless nickel immersion gold (ENIG) and organic solderability preservative (OSP) on copper. Four different profiles were developed with the maximum peak temperatures of 210oC and 215oC and time above liquidus ranging from 60 to 120 seconds using Sn-Pb paste. One profile was generated for a lead-free control. A total of 60 boards were assembled. Some of the boards were subjected to an as assembled analysis while others were subjected to an accelerated thermal cycling (ATC) test in the temperature range of -40oC to 125oC for a maximum of 3500 cycles in accordance with IPC 9701A standard. Weibull plots were created and failure analysis performed. Analysis of as-assembled solder joints revealed that for a time above liquidus of 120 seconds and below, the degree of mixing between the BGA SAC ball alloy and the Sn-Pb solder paste was less than 100 percent for packages with a ball pitch of 0.8mm or greater. Depending on package size, the peak reflow temperature was observed to have a significant impact on the solder joint microstructural homogeneity. The influence of reflow process parameters on solder joint reliability was clearly manifested in the Weibull plots. This paper provides a discussion of the impact of various profiles' characteristics on the extent of mixing between SAC and Sn-Pb solder alloys and the associated thermal cyclic fatigue performance.
1 |