Technical Library: universal series 5 (Page 1 of 1)

Revolutionize PCB Manufacturing with SMT Dispensing Machines

Technical Library | 2023-12-18 11:33:57.0

Elevate your electronic manufacturing game with the I.C.T-D600 SMT Dispensing Machine! Precision, safety, and efficiency in one powerful solution. ​In the dynamic realm of electronic manufacturing, precision and efficiency are not just preferences but essential requirements. Introducing the I.C.T-D600, an automatic glue dispenser machine engineered to enhance production processes across various applications. From chip encapsulation to PCB assembly, SMT red-glue dispensing, LED lens production, and medical device creation, SMT dispensing machine is a versatile solution tailored to meet the demands of the industry. Essential Attributes Of The I.C.T-D600 Automatic Glue Dispenser Machine 1. Compliance with European Safety Standards: The I.C.T-D600 SMT dispensing machine prioritizes not only efficiency but also safety, boasting compliance with European safety standards and holding a CE certificate. This ensures a secure and reliable manufacturing environment, aligning with global quality benchmarks. 2. International Component Quality: Internationally renowned components form the core of the D600 SMT dispensing machine. From Panasonic servomotors to MINTRON CCD, each element is carefully selected, guaranteeing high performance and durability. This commitment to quality components results in a machine that operates seamlessly, reducing downtime and maintenance costs. 3. Impressive Performance Metrics: The SMT dispensing machinedoesn't just meet expectations; it surpasses them with exceptional performance metrics: Maximum Guide Rail Speed: 400mm/s Fastest Injection Valve Speed: 20 spots/sec Dispensing Accuracy: ±0.02mm Repeated Accuracy: ±0.01mm Machine Characteristics: Core Part – Jet Valve The non-contact jet dispensing method ensures high-speed operation (max jet speed: 20 spots/second), high accuracy with a minimum dispensing volume of 5nl, and flexibility with extremely small dispensing volumes. The thermostatic system for the flow channel and sprayer ensures uniform glue temperature, resulting in low maintenance costs and an extended service life. Enhanced Capacity: Non-contact jet dispensing eliminates the need for Z-axis motion. Integrated temperature control technology reduces manual intervention. Automatic glue compensation minimizes artificial regulation time. Dual-track design reduces waiting time. Automatic visual location identification and compensation. Non-contact height detection with laser reduces height detection time. Flexibility: Capable of handling substrates or backings of various sizes. Optional heating module. Independent control of dual tracks with user-friendly software. Fast switching between different product lines. Universal platform suitable for various processes with different glues

I.C.T ( Dongguan ICT Technology Co., Ltd. )

Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer

Technical Library | 2024-02-02 07:48:31.0

Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer In today's rapidly evolving electronics manufacturing landscape, optimizing efficiency, cost-effectiveness, and precision remains paramount. Businesses engaged in producing industrial control boards, computer motherboards, mobile phone motherboards, and mining machine boards face ongoing challenges in streamlining production processes. The integration of expensive equipment strains budgets, making the creation of an efficient, cost-effective high-speed SMT line a daunting task. However, a solution exists that seamlessly combines these elements into a singular, high-performance, and cost-effective SMT line. Let's delve into the specifics. A Comprehensive High-Speed SMT Line Our innovative solution amalgamates two pivotal components: a cutting-edge SMT (Surface Mount Technology) production line and a laser cutting line equipped with a depanelizer. The SMT Production Line The high-speed SMT line comprises several essential components, each fulfilling a unique role in the manufacturing process: 1. PCB Loader: This initial stage involves loading boards onto the production line with utmost care. Our Board Loader prioritizes safety, incorporating various safety light curtains and sensors to promptly halt operations and issue alerts in case of any anomalies. 2. Laser Marking Machine: Every PCB receives a unique two-dimensional code or barcode, facilitating comprehensive traceability. Despite the high-temperature laser process potentially leading to dust accumulation on PCB surfaces, our dedicated PCB Surface Cleaner swiftly addresses this issue. 3. SMT Solder Paste Printer: This stage involves applying solder paste to the boards, a fundamental step in the manufacturing process. 4. SPI (Solder Paste Inspection): Meticulous inspections are conducted at this stage. Boards passing inspection proceed through the NG (No Good) Buffer Conveyor to the module mounters. Conversely, "No Good" results prompt storage of PCBs in the NG Buffer Conveyor, capable of accommodating up to 25 PCBs. Operators can retrieve these NG boards for rework after utilizing our specialized PCB Mis Cleaner to remove solder paste. 5. Module Mounters: These machines excel in attaching small and delicate components, necessitating precision and expertise in the module mounting process. 6. Standard Pick And Place Machines: The selection of these machines is contingent upon your specific BOM (Bill of Materials) list. 7. Pre-Reflow AOI (Automated Optical Inspection): Boards undergo examination for component quality at this stage. Detected issues prompt the Sorting Conveyor to segregate boards for rework. 8. Reflow Oven: Boards undergo reflow soldering, with our Lyra series reflow ovens recommended for their outstanding features, including nitrogen capability, flux recycling, and water cooling function, ensuring impeccable soldering results. 9. Post-Reflow AOI: This stage focuses on examining soldering quality. Detected defects prompt the Sorting Conveyor to segregate boards for further inspection or rework. Any identified defects are efficiently addressed with the BGA rework station, maintaining the highest quality standards. 10. Laser Depanelizer: Boards advance to the laser depanelizer, where precision laser cutting, often employing green light for optimal results, ensures smoke-free, highly accurate separation of boards. 11. PCB Placement Machine: Cut boards are subsequently managed by the PCB Placement Machine, arranging them as required. With this, all high-speed SMT line processes are concluded. Efficiency And Output This production line demonstrates exceptional productivity when manufacturing motherboards with approximately 3000 electronic components, boasting the potential to assemble up to 180 boards within a single hour. Such efficiency not only enhances output but also ensures cost-effectiveness and precision in your manufacturing processes. At I.C.T, we specialize in crafting customized SMT production line solutions tailored to your product and specific requirements. Our equipment complies with European safety standards and holds CE certificates. For inquiries or to explore our exemplary post-sales support, do not hesitate to contact us. The I.C.T team is here to elevate your electronics manufacturing to new heights of efficiency and cost-effectiveness.

I.C.T ( Dongguan ICT Technology Co., Ltd. )

Assembly And Reliability Issues Associated With Leadless Chip Scale Packages

Technical Library | 2006-10-02 14:26:47.0

This paper addresses the assembly and reliability of 0.5 mm pitch leadless Chip Scale Packages (CSP) on .062" immersion Ag plated printed circuit boards (PCB) using Pb-free solder paste. Four different leadless CSP designs were studied and each was evaluated using multiple PCB attachment pad designs.

Universal Instruments Corporation

Surfaces of mixed formulation solder alloys at melting

Technical Library | 2022-10-31 17:25:37.0

Mixed formulation solder alloys refer to specific combinations of Sn-37Pb and SAC305 (96.5Sn–3.0Ag–0.5Cu). They present a solution for the interim period before Pb-free electronic assemblies are universally accepted. In this work, the surfaces of mixed formulation solder alloys have been studied by in situ and real-time Auger electron spectroscopy as a function of temperature as the alloys are raised above the melting point. With increasing temperature, there is a growing fraction of low-level, bulk contaminants that segregate to the alloy surfaces. In particular, the amount of surface C is nearly _50–60 at. % C at the melting point. The segregating impurities inhibit solderability by providing a blocking layer to reaction between the alloy and substrate. A similar phenomenon has been observed over a wide range of (SAC and non-SAC) alloys synthesized by a variety of techniques. That solder alloy surfaces at melting have a radically different composition from the bulk uncovers a key variable that helps to explain the wide variability in contact angles reported in previous studies of wetting and adhesion. VC 2011 American Vacuum Society. [DOI: 10.1116/1.3584821]

Auburn University

Packaging Technology and Design Challenge for Fine Pitch Micro-Bump Cu-Pillar and BOT (Direct Bond on Substrate-Trace) Using TCNCP

Technical Library | 2015-12-02 18:32:50.0

(Thermal Compression with Non-Conductive Paste Underfill) Method.The companies writing this paper have jointly developed Copper (Cu) Pillar micro-bump and TCNCP(Thermal Compression with Non-Conductive Paste) technology over the last two+ years. The Cu Pillar micro-bump and TCNCP is one of the platform technologies, which is essentially required for 2.5D/3D chip stacking as well as cost effective SFF (small form factor) package enablement.Although the baseline packaging process methodology for a normal pad pitch (i.e. inline 50μm) within smaller chip size (i.e. 100 mm2) has been established and are in use for HVM production, there are several challenges to be addressed for further development for commercialization of finer bump pitch with larger die (i.e. ≤50μm tri-tier bond pad with the die larger than 400mm2).This paper will address the key challenges of each field, such as the Cu trace design on a substrate for robust micro-joint reliability, TCNCP technology, and substrate technology (i.e. structure, surface finish). Technical recommendations based on the lessons learned from a series of process experimentation will be provided, as well. Finally, this technology has been used for the successful launching of the company FPGA products with SFF packaging technology.

Altera Corporation

Effect of Cu–Sn intermetallic Compound Reactions on the Kirkendall Void Growth Characteristics in Cu/Sn/Cu Microbumps

Technical Library | 2014-07-02 16:46:09.0

Growth behaviors of intermetallic compounds (IMCs) and Kirkendall voids in Cu/Sn/Cu microbump were systematically investigated by an in-situ scanning electron microscope observation. Cu–Sn IMC total thickness increased linearly with the square root of the annealing time for 600 h at 150°C, which could be separated as first and second IMC growth steps. Our results showed that the growth behavior of the first void matched the growth behavior of second Cu6Sn5, and that the growth behavior of the second void matched that of the second Cu3Sn. It could be confirmed that double-layer Kirkendall voids growth kinetics were closely related to the Cu–Sn IMC growth mechanism in the Cu/Sn/Cu microbump, which could seriously deteriorate the mechanical and electrical reliabilities of the fine-pitch microbump systems

Nepes Corporation

  1  

universal series 5 searches for Companies, Equipment, Machines, Suppliers & Information

convection smt reflow ovens

Component Placement 101 Training Course
Selective Soldering Nozzles

Software for SMT placement & AOI - Free Download.
IPC Training & Certification - Blackfox

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.
pressure curing ovens

World's Best Reflow Oven Customizable for Unique Applications