Technical Library: up 2020 (Page 1 of 2)

A Non-destructive Approach to Identify Intermittent Failure Locations on Printed Circuit Cards (PCC) that have been Temperature Cycle Tested

Technical Library | 2020-12-07 15:26:06.0

Temperature cycling testing is a method of accelerated life testing done to PCCs that are exposed to normal operation temperature variations over its lifetime. During the testing, intermittent "open" failures can first occur at the hot and cold extremes of the test, exposing weaknesses in the design and assembly. A poor/weak solder joint fatigues, a via trace or barrel cracks, loose connections or a component fails all causing an intermittent open. When not at extreme temperatures, the PCC assembly relaxes, the "open" closes creating electrical connectivity. If you are monitoring the PCC under test in-situ you will know that an intermittent failure has occurred, and the test could be stopped for inspection. If in-situ monitoring was not implemented, you would not know if there were intermittent failures or not. The PCC gets powered up and works fine at room temperature.

ACI Technologies, Inc.

Silver in Printed & Flexible Electronics

Technical Library | 2021-07-13 19:54:59.0

This Market Trend Report for the Silver Institute examines silver's growing role in printed and flexible electronics. According to our research, 33.9% of the annual silver global supply in 2020 ended up in electronics. This is a total of 327 million troy ounces (Moz) that finds its way into various electronics markets every year. Given the projected growth of electrification, we are confident that this will continue to grow over time since silver is the world's most conductive material.

Silver Institute

Head-on-Pillow Defect Detection – X-ray Inspection Limitations

Technical Library | 2020-05-26 22:28:56.0

Both the number and the variants of Ball Grid Array packages (BGAs) are tending to increase on network Printed Board Assemblies (PBAs)with sizes ranging from a few mm die size Wafer Level Packages (WLPs) with low ball count up to large multi-die System-in-Package (SiP) BGAs with 60-70 mm side lengths and thousands of I/Os.

Ericsson AB

Copper/Epoxy Joints in Printed Circuit Boards: Manufacturing and Interfacial Failure Mechanisms

Technical Library | 2020-01-09 00:00:30.0

PCBs have a wide range of applications in electronics where they are used for electric signal transfer. For a multilayer build-up, thin copper foils are alternated with epoxy-based prepregs and laminated to each other. Adhesion between copper and epoxy composites is achieved by technologies based on mechanical interlocking or chemical bonding, however for future development, the understanding of failure mechanisms between these materials is of high importance. In literature, various interfacial failures are reported which lead to adhesion loss between copper and epoxy resins. This review aims to give an overview on common coupling technologies and possible failure mechanisms. The information reviewed can in turn lead to the development of new strategies, enhancing the adhesion strength of copper/epoxy joints and, therefore, establishing a basis for future PCB manufacturing.

Polymer Competence Center Leoben GmbH

Via In Pad - Conductive Fill or Non-Conductive Fill?

Technical Library | 2020-07-15 18:29:34.0

In the early 2000s the first fine-pitch ball grid array devices became popular with designers looking to pack as much horsepower into as small a space as possible. "Smaller is better" became the rule and with that the mechanical drilling world became severely impacted by available drill bit sizes, aspect ratios, and plating methodologies. First of all, the diameter of the drill needed to be in the 0.006" or smaller range due to the reduction of pad size and spacing pitch. Secondly, the aspect ratio (depth to diameter) became limited by drill flute length, positional accuracy, rigidity of the tools (to prevent breakage), and the throwing power of acid copper plating systems. And lastly, the plating needed to close up the hole as much as possible, which led to problems with voiding, incomplete fill, and gas/solution entrapment.

Advanced Circuits

101 EMI Shielding Tips and Tricks

Technical Library | 2020-07-02 13:16:32.0

Principle of shielding 1 The principle of shielding is creating a conductive layer completely surrounding the object you want to shield. This was invented by Michael Faraday and this system is known as a Faraday Cage. 2 Ideally, the shielding layer will be made up of conductive sheets or layers of metal that are connected by means of welding or soldering, without any interruptions. The shielding is perfect when there is no difference in conductivity between the used materials. When dealing with frequencies below 30 MHz, the metal thickness affects shielding effectiveness. We also offer a range of shielding methods for plastic enclosures. A complete absence of interruptions is not a realistic goal since the Faraday cage will have to be opened from time to time so electronics, equipment or people can be moved in or out. Openings are also needed for displays, ventilation, cooling, power supply, signals etc. 3 Shielding works in both directions, items inside the shielded room are shielded from outside influences. (Fig. 3.1)

Holland Shielding Systems BV

RELIABLE NICKEL-FREE SURFACE FINISH SOLUTION FOR HIGHFREQUENCY-HDI PCB APPLICATIONS

Technical Library | 2020-08-05 18:49:32.0

The evolution of internet-enabled mobile devices has driven innovation in the manufacturing and design of technology capable of high-frequency electronic signal transfer. Among the primary factors affecting the integrity of high-frequency signals is the surface finish applied on PCB copper pads – a need commonly met through the electroless nickel immersion gold process, ENIG. However, there are well-documented limitations of ENIG due to the presence of nickel, the properties of which result in an overall reduced performance in high-frequency data transfer rate for ENIG-applied electronics, compared to bare copper. An innovation over traditional ENIG is a nickel-less approach involving a special nano-engineered barrier designed to coat copper contacts, finished with an outermost gold layer. In this paper, assemblies involving this nickel-less novel surface finish have been subjected to extended thermal exposure, then intermetallics analyses, contact/sheet resistance comparison after every reflow cycle (up to 6 reflow cycles) to assess the prevention of copper atoms diffusion into gold layer, solder ball pull and shear tests to evaluate the aging and long-term reliability of solder joints, and insertion loss testing to gauge whether this surface finish can be used for high-frequency, high density interconnect (HDI) applications.

LiloTree

All-in-One, Wireless, Stretchable Hybrid Electronics for Smart, Connected, and Ambulatory Physiological Monitoring

Technical Library | 2020-08-19 19:13:00.0

Commercially available health monitors rely on rigid electronic housing coupled with aggressive adhesives and conductive gels, causing discomfort and inducing skin damage. Also, research-level skin-wearable devices, while excelling in some aspects, fall short as concept-only presentations due to the fundamental challenges of active wireless communication and integration as a single device platform. Here, an all-in-one, wireless, stretchable hybrid electronics with key capabilities for real-time physiological monitoring, automatic detection of signal abnormality via deep-learning, and a long-range wireless connectivity (up to 15 m) is introduced. The strategic integration of thin-film electronic layers with hyperelastic elastomers allows the overall device to adhere and deform naturally with the human body while maintaining the functionalities of the on-board electronics. The stretchable electrodes with optimized structures for intimate skin contact are capable of generating clinical-grade electrocardiograms and accurate analysis of heart and respiratory rates while the motion sensor assesses physical activities. Implementation of convolutional neural networks for real-time physiological classifications demonstrates the feasibility of multifaceted analysis with a high clinical relevance. Finally, in vivo demonstrations with animals and human subjects in various scenarios reveal the versatility of the device as both a health monitor and a viable research tool.

Georgia Institute of Technology

Comparison Of Active And Passive Temperature Cycling

Technical Library | 2020-12-10 15:49:40.0

Electronic assemblies should have longer and longer service life. Today there are partially demanded 20 years of functional capability for electronics for automotive application. On the other hand, smaller components, such as resistors of size 0201, are able to endure an increasing number of thermal cycles until fail of solder joints, so these are tested sometimes up to 4000 cycles. But testing until the end of life is essential for the determination of failure rates and the prognosis of reliability. Such tests require a lot of time, but this is often not available in developing of new modules. A further acceleration by higher cycle temperatures is usually not possible, because the materials are already operated at the upper limit of the load. However, the duration can be shortened by the use of liquids for passive tests, which allow faster temperature changes and shorter dwell times because of better heat transfer compared to air. The question is whether such tests lead to comparable results and what failure mechanisms are becoming effective. The same goes for active temperature cycles, in which the components itself are heated from inside and the substrate remains comparatively cold. This paper describes the various accelerated temperature cycling tests, compares and evaluates the related degradation of solder joints.

University of Rostock

Moisture Effect on Properties of Out-of-Autoclave Laminates with Different Void Content

Technical Library | 2020-12-16 18:38:49.0

Fabrication of large structures using out-of-autoclave prepreg materials will lead to a great amount of savings in manufacturing costs. In the out-of-autoclave processing method, the presence of voids inside the laminate has been an issue due to the lack of high pressure during manufacturing. This study aims primarily to observe the moisture absorption response of composite samples containing different levels of void. By changing the vacuum level inside the bag during the manufacturing process, three different unidirectional laminates at three levels of void have been manufactured. After immersing the samples in warm water at 60°C for about one year, the moisture absorption level was monitored and then diffusion coefficients were calculated using Fick's law. Results show that the moisture absorption coefficient changes by %8 within the experimental range of void contents. The mechanical behaviour of these laminates has been studied at four different moisture levels by performing dynamic mechanical analysis (DMA) and short beam shear tests. Empirical results indicate that, in general, interlaminar shear strength and glass transition temperature decrease by moisture build-up inside the samples. DiBenedetto equation is proposed to make a correlation between the moisture content and glass transition temperature.

Concordia University

  1 2 Next

up 2020 searches for Companies, Equipment, Machines, Suppliers & Information