Technical Library: up side down (Page 1 of 1)

Crafting an Efficient SMT Conformal Coating Line for Double-Sided PCBA

Technical Library | 2023-11-09 08:53:45.0

Crafting an Efficient SMT Conformal Coating Line for Double-Sided PCBA In the intricate realm of electronics manufacturing, selecting the ideal SMT conformal coating line can seem like a challenging quest. The pursuit of a solution that seamlessly integrates efficiency, reliability, and performance is the ultimate goal. In this article, we embark on a journey to unravel the secrets of a standard SMT conformal coating line, using a captivating visual guide as our compass. The Symphony Of Components In An SMT Conformal Coating Line Picture a finely orchestrated symphony, with each instrument playing a unique role in this PCB coating process. The star performers in this lineup include: Transfer Conveyor: These act as the stage where the PCB's journey begins. Think of them as the entry and exit points for your precious boards, allowing a smooth, choreographed dance through the line. 1st Coating Machine: As the first movement in this musical journey, this machine, partnered with the initial curing station, lays down the foundation – applying adhesive to one side of the PCB. Inspection Conveyor: After the initial curing, our inspectors take center stage, using these transfer stations to carefully evaluate the coating's quality. 1st Curing Oven: This is where the magic happens. The first curing oven solidifies the adhesive applied in the previous act, setting the tone for a flawless performance. Flipper Machine: The flipper machine takes the spotlight, gracefully turning the PCB to reveal its other side, ensuring both faces receive their share of adhesion. 2nd Coating Machine: With a newfound perspective, the second coating machine takes the stage, applying adhesive to the reverse side of the PCB. 2nd Curing Oven: The grand finale! The second curing oven brings our symphony to a breathtaking close, solidifying the adhesive applied in the second act, creating a harmonious, dual-sided masterpiece. Efficiency Meets Dual-Side Coating This SMT conformal coating line is like a well-choreographed ballet that requires at least two dancers. One stands at the front, carefully loading PCBs onto the stage, guiding them through the first act. After the flip, the second dancer carries them through the second act, with both sides perfectly coated, ensuring a flawless performance for applications requiring dual-sided adhesion. UV Curing Oven For Illuminating Results For applications that embrace UV-curable adhesives, our line includes UV curing ovens, adding a layer of brilliance to the process and ensuring an efficient solidification of adhesives. Transfer Stations With A Touch Of Magic Within this symphony, the transfer stations wear a touch of magic – the second and fourth stations feature enchanting blue glass covers illuminated by embedded LED lights. These stations offer operators a clear view of the adhesive quality, allowing for meticulous inspections. The blue glass covers also act as protective shields, guarding freshly coated PCBs from the ever-present dust fairies. Certified Excellence: European Standards And CE Certification Ensuring that our performance meets the highest standards, our entire ensemble adheres to stringent European safety standards and proudly boasts CE certification, a testament to compliance with safety, health, and environmental protection requirements. A Variety Of Coating Machines For Your Unique Needs Our lineup doesn't just feature one star, but an ensemble of coating machines, including models like I.C.T-T550, I.C.T-T550U, I.C.T-T600, and I.C.T-T650. For an encore performance with detailed specifications of each model, please refer to our dedicated article. Additionally, for a captivating exploration of the right coating valve for your adhesive, please visit our comprehensive guide. Single-Sided PCB Coating For those who prefer a single board, our dedicated article on single-sided PCB coating is a spotlight on this specialized process. In the dynamic world of electronics manufacturing, our SMT conformal coating line stands as a versatile and reliable performance. With dual-sided coating capabilities, adherence to European safety standards, and CE certification, we offer a comprehensive platform for your coating needs. Join us in this symphony and explore our range of coating machines and accessories to enhance your conformal coating process. It's a performance that promises to leave you in awe!

I.C.T ( Dongguan ICT Technology Co., Ltd. )

Effective Supply Chain Management

Technical Library | 2001-05-23 17:00:44.0

The complexities of getting material ordered, manufactured and delivered overload most supply chain management (SCM) systems. The fact is, most systems are just not up to handling all the variables up and down the supply chain...

R. Michael Donovan & Co., Inc.

Demystifying Adhesive Dispensing within the High-End Appliance Industry

Technical Library | 2018-08-16 12:18:23.0

Appliance designers are constantly evolving to satisfy the ever changing wants and needs of their consumer base. These changes filter down and include not only the materials but also the equipment used to dispense the material in the manufacturing processes. Moreover, the latest evolution of appliances also seeks to add luxury controls and eye-catching applications. This challenge then, of new applications and material dispensing, often means the application and execution of these increasingly complex materials present multiple challenges up and down the appliance supply chain. Successfully meeting the material dispensing challenge has the potential to spur growth significantly in the higher-end appliance industry as the manufacturing adhesion processes evolve to meet market demand.

Scheugenpflug Inc.

Horizontal Convection Reflow Technology Defined

Technical Library | 2009-12-23 16:55:08.0

Leading up to the development of lead-free soldering alloys, Horizontal Convection* was developed for the reflow process. Getting the correct temperature profile, with the narrow process window in lead-free applications, is now more important than ever. In each chamber or “zone”, air is circulated toward one side of the oven above the PCB and toward the opposite side of the oven below the PCB, forming a “cyclone” around the board. The forced air circulation results in a uniform temperature profile along the entire circuit board assembly. This technology is ideal for the precise profiles needed for lead free soldering.

DDM Novastar Inc

Challenges for Step Stencils with Design Guidelines for Solder Paste Printing

Technical Library | 2015-08-25 13:51:27.0

The stencil printing process is one of the most critical processes in the electronic production. Due to the requirement: "faster and smaller" it is necessary to place components with different paste volume close together without regard to solder paste printing. In our days it is no longer possible to control the solder paste volume only by adjustment of the aperture dimensions. The requirements of solder paste volumes for specific components are realized by different thicknesses of metal sheets in one stencil with so called step stencils. The step-down stencil is required when it is desirable to print fine-pitch devices using a thinner stencil foil, but print other devices using a thicker stencil foil. The paper presents the innovative technology of step-up and step-down stencils in a laser cutting and laser welding process. The step-up/step-down stencil is a special development for the adjustment of solder paste quantity, fulfilling the needs of placement and soldering. This includes the laser cutting and laser welding process as well as the resulting stencil characteristics and the potential of the printing process.

LaserJob

Head-on-Pillow Defect Detection – X-ray Inspection Limitations

Technical Library | 2020-05-26 22:28:56.0

Both the number and the variants of Ball Grid Array packages (BGAs) are tending to increase on network Printed Board Assemblies (PBAs)with sizes ranging from a few mm die size Wafer Level Packages (WLPs) with low ball count up to large multi-die System-in-Package (SiP) BGAs with 60-70 mm side lengths and thousands of I/Os.

Ericsson AB

Success Story of PCB Assembly Trend

Technical Library | 2016-08-04 10:34:35.0

With the onset of 1900’s, the novelty of printed circuits boards got started with a profound concept of constructing an electrical path on an isolated surface of a board. The initial trend of printed circuit board got into a vain to develop and upgrade the radios and gramophones. Gradually the notion of ‘Through Hole Technique’ came into picture to produce a double sided PCB. In mid 1990’s the idea of auto assembly process was introduced by PCB Manufacturer USA. This was a point of modern touch to enhance the fabrication process with automated soldering technique. The research and development picked up a pace for end to end electronic solutions for defense and US army.

4PCB Assembly

Intermetallic Growth in Tin-Rich Solders

Technical Library | 2017-06-13 17:14:59.0

For tin-rich solder alloys, 200 C (392 F) is an extreme temperature. Intermetallic growth in tin-copper systems is known to occur and is believed to bear a direct relationship to failure mechanisms. This study of morphological changes with time at elevated temperatures was made to determine growth rates of tin-copper intermetallics. Preferred growth directions, rates of thickening, and notable changes in morphology were observed.Each of four tin-base alloys was flowed on copper and exposed to temperatures between 100 C and 200 C for time periods of up to 32 days. Metallographic sections were taken and the intermetallics were examined. Intermetallic layer thickening is characterized by several distinct stages. The initial growth of side plates is extremely rapid and exaggerated. This is followed by retrogression (spheroidization) of the elongated peaks and by general thick-

General Electric

High Reliability and High Temperature Application Solution - Solder Joint Encapsulant Paste

Technical Library | 2017-10-16 15:03:32.0

The miniaturization and advancement of electronic devices have been the driving force of design, research and development, and manufacturing in the electronic industry. However, there are some issues occurred associated with the miniaturization, for examples, warpage and reliability issues. In order to resolve these issues, a lot of research and development have been conducted in the industry and university with the target of moderate melting temperature solder alloys such as m.p. 280°C. These moderate temperature alloys have not resolve these issues yet due to the various limitations. YINCAE has been working on research and development of the materials with lower temperature soldering for higher temperature application. To meet this demand, YINCAE has developed solder joint encapsulant paste to enhance solder joint strength resulting in improving drop and thermal cycling performance to eliminate underfilling, edge bonding or corner bonding process in the board level assembly process. This solder joint encapsulant paste can be used in typical lead-free profile and after reflow the application temperature can be up to over 300C, therefore it also eliminates red glue for double side reflow process. In this paper, we will discuss the reliability such as strength of solder joints, drop test performance and thermal cycling performance using this solder joint encapsulant paste in detail.

YINCAE Advanced Materials, LLC.

Effects of Temperature Uniformity on Package Warpage

Technical Library | 2019-10-03 14:27:01.0

Knowing how package warpage changes over temperature is a critical variable in order to assemble reliable surface mount attached technology. Component and component or component and board surfaces must stay relatively flat with one another or surface mount defects, such as head-in-pillow, open joints, bridged joints, stretched joints, etc. may occur. Initial package flatness can be affected by numerous aspects of the component manufacturing and design. However, change in shape over temperature is primarily driven by CTE mismatch between the different materials in the package. Thus material CTE is a critical factor in package design. When analyzing or modeling package warpage, one may assume that the package receives heat evenly on all sides, when in production this may not be the case. Thus, in order to understand how temperature uniformity can affect the warpage of a package, a case study of package warpage versus different heating spreads is performed.Packages used in the case study have larger form factors, so that the effect of non-uniformity can be more readily quantified within each package. Small and thin packages are less prone to issues with package temperature variation, due to the ability for the heat to conduct through the package material and make up for uneven sources of heat. Multiple packages and multiple package form factors are measured for warpage via a shadow moiré technique while being heated and cooled through reflow profiles matching real world production conditions. Heating of the package is adjusted to compare an evenly heated package to one that is heated unevenly and has poor temperature uniformity between package surfaces. The warpage is measured dynamically as the package is heated and cooled. Conclusions are drawn as to how the role of uneven temperature spread affects the package warpage.

Akrometrix

  1  

up side down searches for Companies, Equipment, Machines, Suppliers & Information