Technical Library | 2014-03-20 12:37:39.0
In the beginning of SMT, Vapor Phase Soldering was the preferred reflow soldering technology because of its excellent heat transfer capabilities. There were also some disadvantages like fast temperature rise, nearly no influence on the temperature profiles and high costs. So the use of Vapor Phase Soldering was reduced to special applications with high mass or complex boards in low numbers (e.g. for military or aerospace use).
Technical Library | 2013-03-27 23:43:40.0
Vapor phase, once cast to the annals’ of history is making a comeback. Why? Reflow technology is well developed and has served the industry for many years, it is simple and it is consistent. All points are true – when dealing with the centre section of the bell curve. Today’s PCB manufacturers are faced with many designs which no longer fall into that polite category but rather test the process engineering groups with heavier and larger panels, large ground planes located in tricky places, component mass densities which are poorly distributed, ever changing Pb Free alloys and higher process temperatures. All the time the costs for the panels increase, availability of “process trial” boards diminishes and yields are expected to be extremely high with zero scrap rates. The final process in the assembly line has the capacity to secure all the value of the assembly or destroy it. If a panel is poorly soldered due to poor Oven setup or incorrect programming of the profile the recovery of the panel is at best expensive, at worst a loss. For these challenges people are turning to Vapor Phase.
Technical Library | 2000-06-21 17:55:59.0
There was once a time when precision cleaning required minimal thought. Just about anything that was dirty could be placed inside a vapor degreaser and emerge clean and dry in a matter of minutes. Today, precision cleaning decisions are seemingly endless with ever-changing environmental regulations, user safety issues and product compatibility concerns. Technologies range from spray-in-atmosphere to ultrasonics to spray under immersion using aqueous, solvent or semiaqueous chemistries. Which method works and with what chemistry? Will the process be safe or even allowed by the regulating agencies?
Technical Library | 2014-01-30 18:08:04.0
As of today, the electronic industry is aware of the requirements for their products to be lead free. All components are typically available in lead free quality. This comprises packages like BGAs with BGA solder balls to PCB board finishes like HASL. The suppliers are providing everything that is needed. It is harder to get the old tin leaded (SnPb) components for new applications today, than lead free ones. So why has not everybody changed over fully yet and how can the challenges be overcome? A big concern in this transition process is reflow soldering. The process temperatures for lead free applications became much higher. Related with this is more stress for all the components. It affects the quality and reliability of the electronic units and products...
Technical Library | 2019-05-01 23:18:27.0
Moisture can accelerate various failure mechanisms in printed circuit board assemblies. Moisture can be initially present in the epoxy glass prepreg, absorbed during the wet processes in printed circuit board manufacturing, or diffuse into the printed circuit board during storage. Moisture can reside in the resin, resin/glass interfaces, and micro-cracks or voids due to defects. Higher reflow temperatures associated with lead-free processing increase the vapor pressure, which can lead to higher amounts of moisture uptake compared to eutectic tin-lead reflow processes. In addition to cohesive or adhesive failures within the printed circuit board that lead to cracking and delamination, moisture can also lead to the creation of low impedance paths due to metal migration, interfacial degradation resulting in conductive filament formation, and changes in dimensional stability. Studies have shown that moisture can also reduce the glass-transition temperature and increase the dielectric constant, leading to a reduction in circuit switching speeds and an increase in propagation delay times. This paper provides an overview of printed circuit board fabrication, followed by a brief discussion of moisture diffusion processes, governing models, and dependent variables. We then present guidelines for printed circuit board handling and storage during various stages of production and fabrication so as to mitigate moisture-induced failures.
Technical Library | 2018-03-05 11:17:31.0
In order to comply with RoHS and WEEE directives, many circuit assemblers are transitioning some or all of their soldering processes from tin-lead to lead-free within the upcoming year. There are no drop-in replacement alloys for tin-lead solder, which is driving a fundamental technology change. This change is forcing manufacturers to take a closer look at everything associated with the assembly process: board and component materials, logistics and materials management, solder alloys and processing chemistries, and even soldering methods. Do not expect a dramatic change in soldering behavior when moving to lead-free solders. The melting points of the alloys are higher, but at molten temperatures the different alloys show similar behaviors in a number of respects. Expect subtler changes, especially near the edges of a process window that is assumed based on tin-lead experience rather than defined through lead-free experimentation. These small changes, many of them yet to be identified and understood, will manifest themselves with lower assembly yields. The key to keeping yields up during the transition to lead-free is quickly learning what and where the subtle distinctions are, and tuning the process to accommodate them.
Technical Library | 2020-03-01 23:06:45.0
For though hole soldering, no matter it's wave soldering or selective soldering, the process is same formed by fluxing,preheating,soldering. How these 3 process will change the soldering result? When you face the soldering defects, what could be the reasons caused these and how to debug them? With below information you may get some hints.
Technical Library | 2014-08-19 16:04:28.0
SMT assembly planning and failure analysis of surface mount assembly defects often include component warpage evaluation. Coplanarity values of Integrated Circuit packages have traditionally been used to establish pass/fail limits. As surface mount components become smaller, with denser interconnect arrays, and processes such package-on-package assembly become prevalent, advanced methods using dual surface full-field data become critical for effective Assembly Planning, Quality Assurance, and Failure Analysis. A more complete approach than just measuring the coplanarity of the package is needed. Analyzing the gap between two surfaces that are constantly changing during the reflow thermal cycle is required, to effectively address the challenges of modern SMT assembly.
Technical Library | 2009-07-15 12:14:31.0
The increasing demand for smaller & smaller portable electrical devices is leading to the increasing usage of extremely small components in the SMT assembly lines. With the introduction of 01005 packages in mass production, all the different stages of the line are facing new challenges: from board design, through component placement to reflow process. Each stage introduces some specific types of defect which are considered impossible to repair due to the small size of the package. AOI has become an essential tool to enable good yield in the assembly of 01005.
Technical Library | 2014-09-25 18:16:47.0
For the past few years there has been a shift in the Lighting Industry that has carried over to the surface mount technology assembly line. What is this shift you may ask? Well it is the LED revolution. This revolution or change in lighting has some very promising results already in practice and many more companies looking to implement the LED technology into their product portfolio's. With a number of companies looking to expand their portfolio to include LED fixtures there has been an increase in the number of companies that have started their own SMT lines, as well as a significant number of contract manufacturers to meet this new industries demands (...)This presentation will discuss some issues in the pick and place process for LEDs and presents a method to troubleshoot and resolve these issues.
Main Products: 1. Original new and Original Used SMT/AI Spare Parts. 2. SMT Equipments And Related Machine( SMT Calibration, SMT Feeder Carts,Conveyer etc.) 3. Maintenace and Repair Service Pre-Sales Service Provide details ab
Manufacturer's Representative / Manufacturer / Equipment Dealer / Broker / Auctions / Consultant / Service Provider
3 Road Xintang, Fuhai Street,Fuyong
Shenzhen, 30 China
Phone: 13713862102