Technical Library: vapour and phase (Page 1 of 1)

Product Design and Early Manufacturing Involvement

Technical Library | 2020-04-01 14:24:56.0

It happens much too often; manufacturing engineers are brought into a NEW product design phase at the very end of a design and are asked to provide input that should have been provided much earlier. One needs to understand how the circuit board design and quality of the manufacturing process not only effects assembly yield and product reliability, but how it could also affect the results of any testing that is done to circuit packs during prototyping. It is important that any circuit pack (including prototypes) that will be used in reliability, performance and functional testing be designed with the proper features and assembled with a manufacturing process that has been developed to produce a high-quality assembly. If not, the results of any testing might not represent the actual characteristics of the design and provide miss-guidance to future changes.

ACI Technologies, Inc.

Common Process Defect Identification of QFN Packages

Technical Library | 2019-07-23 22:33:47.0

The Quad Flat Pack No Leads (QFN) style of leadless packaging [also known as a Land Grid Array (LGA)] is rapidly increasing in us e for wireless, automotive, telecom and many other areas becaus e of its low cost, low stand-off height and excellent thermal and electri cal properties. With the implementation of any new package type, there is always a learning curve for its use in design and processing as well as for the Process and Quality Engineers who have to get to grips with the challenges that these packages bring. Therefore, this paper will provide examples of the common process defects that can be seen with QFNs /LGAs when using optical and x-ray inspection as part of manufacturing quality control. Results of trials conducted on four PCB finishes and using vapour phase and convection reflow will be discussed.

Nordson DAGE

Solder Phase Coarsening, Fundamentals, Preparation, Measurement and Prediction

Technical Library | 2009-05-07 23:23:00.0

Thermal fatigue has been one of the most serious problems for solder joint reliability. Thermo-mechanical fatigue failure is considered to be closely related to micro-structural coarsening (grain/phase growth). Factors that influence the phase growth are studied and measurement methods are discussed, including the preparation of the eutectic solder sample for phase size measurement. Three categories of models used to predict grain growth in polycrystalline materials are presented. Finally, phase growth in solder during high temperature aging and temperature cycling and its use as a damage correlation factor are discussed.

DfR Solutions

Vapor Phase Technology and its Application

Technical Library | 2013-03-27 23:43:40.0

Vapor phase, once cast to the annals’ of history is making a comeback. Why? Reflow technology is well developed and has served the industry for many years, it is simple and it is consistent. All points are true – when dealing with the centre section of the bell curve. Today’s PCB manufacturers are faced with many designs which no longer fall into that polite category but rather test the process engineering groups with heavier and larger panels, large ground planes located in tricky places, component mass densities which are poorly distributed, ever changing Pb Free alloys and higher process temperatures. All the time the costs for the panels increase, availability of “process trial” boards diminishes and yields are expected to be extremely high with zero scrap rates. The final process in the assembly line has the capacity to secure all the value of the assembly or destroy it. If a panel is poorly soldered due to poor Oven setup or incorrect programming of the profile the recovery of the panel is at best expensive, at worst a loss. For these challenges people are turning to Vapor Phase.

A-Tek Systems Group LLC

Effect of Soldering Parameters on Reaction Kinetics and Phase Transformations of SAC 305 Solder

Technical Library | 2010-07-08 19:56:15.0

As technology becomes increasingly reliant on electronics, understanding the reliability of lead-free solder also becomes increasingly important. This research project focused on phase transformation kinetics with the lead-free solder SAC 305. Today in the electronics industry, SAC 305 is the most widely used solder, making it a high priority to understand its long-term stability and performance in a variety of service conditions. Recent evidence has shifted the focus from thermal aging to reflow temperature and time above liquidus values during initial solder melting.

Radiance Technologies

Streamlining PCB Assembly and Test NPI with Shared Component Libraries

Technical Library | 2016-04-08 01:19:52.0

PCB assembly designs become more complex year-on-year, yet early-stage form/fit compliance verification of all designed-in components to the intended manufacturing processes remains a challenge. So long as librarians at the design and manufacturing levels continue to maintain their own local standards for component representation, there is no common representation in the design-to-manufacturing phase of the product lifecycle that can provide the basis for transfer of manufacturing process rules to the design level. A comprehensive methodology must be implemented for all component types, not just the minority which happen to conform to formal packaging standards, to successfully left-shift assembly and test DFM analysis to the design level and thus compress NPI cycle times.(...)This paper will demonstrate the technological components of the working solution: the logic for deriving repeatable and standardized package and pin classifications from a common source of component physical-model content, the method for associating DFA and DFT rules to those classifications, and the transfer of those rules to separate DFM and NPI analysis tools elsewhere in the design-through-manufacturing chain resulting in a consistent DFM process across multiple design and manufacturing organizations.

Mentor Graphics

Low Melting Temperature Sn-Bi Solder: Effect of Alloying and Nanoparticle Addition on the Microstructural, Thermal, Interfacial Bonding, and Mechanical Characteristics

Technical Library | 2021-05-13 16:03:25.0

Sn-based lead-free solders such as Sn-Ag-Cu, Sn-Cu, and Sn-Bi have been used extensively for a long time in the electronic packaging field. Recently, low-temperature Sn-Bi solder alloys attract much attention from industries for flexible printed circuit board (FPCB) applications. Low melting temperatures of Sn-Bi solders avoid warpage wherein printed circuit board and electronic parts deform or deviate from the initial state due to their thermal mismatch during soldering. However, the addition of alloying elements and nanoparticles Sn-Bi solders improves the melting temperature, wettability, microstructure, and mechanical properties. Improving the brittleness of the eutecticSn-58wt%Bi solder alloy by grain refinement of the Bi-phase becomes a hot topic. In this paper, literature studies about melting temperature, microstructure, inter-metallic thickness, and mechanical properties of Sn-Bi solder alloys upon alloying and nanoparticle addition are reviewed

University of Seoul

Microstructure and Intermetallic Formation in SnAgCu BGA Components Attached With SnPb Solder Under Isothermal Aging

Technical Library | 2022-10-31 17:09:04.0

The global transition to lead-free (Pb-free) electronics has led component and equipment manufacturers to transform their tin–lead (SnPb) processes to Pb-free. At the same time, Pb-free legislation has granted exemptions for some products whose applications require high long-term reliability. However, due to a reduction in the availability of SnPb components, compatibility concerns can arise if Pb-free components have to be utilized in a SnPb assembly. This compatibility situation of attaching a Pb-free component in a SnPb assembly is generally termed "backward compatibility." This paper presents the results of microstructural analysis of mixed solder joints which are formed by attaching Pb-free solder balls (SnAgCu) of a ball-grid-array component using SnPb paste. The experiment evaluates the Pb phase coarsening in bulk solder microstructure and the study of intermetallic compounds formed at the interface between the solder and the copper pad.

CALCE Center for Advanced Life Cycle Engineering

7 Benefits of Choosing Professional PCB Manufacturers and Assemblers

Technical Library | 2020-05-28 02:19:28.0

Properly functioning printed circuit boards are essential for both manufacturers of electronic devices and also the developers if the overall intent is for the electronic device to function at high capacity. From designing the schematics of the printed circuit boards to testing the products, there is no process of PCB manufacturing and/or assembly that can be taken for granted. While it's true that you can attempt this process on your own, especially if you are in possession of a large scale manufacturing facility, here are a few reasons why it would be a better option to opt for a professional company for PCB manufacturing and assembly. 1. Variety A professional printed circuit boards manufacturing company will be able to offer you a huge variety. You will be able to choose from rigid, flexible, or rigid-flex. What's more, the PCBs will be customized as per the need of the application. 2. Quality Professional and good printed circuit board manufacturing and assembling companies might cost you just a little bit extra but they also guarantee to produce the best results and offer very high quality products. In the end, it is quality that will make the difference between mediocre and a high functioning PCB. 3. Cost Efficiency Since you don't have to waste time or resources on buying equipment to produce the best PCBs or hiring staff to oversee the process, you can actually end up saving money. You can even save on PCB assembly cost by hiring this job out. All you have to do is to negotiate the quote and sit back, relax, and wait for the PCBs to be delivered to you. 4. Eliminate Design Flaws Design engineers hired by PCB manufacturing and assembling companies use the best graphic software to develop and test the schematics of PCBs. This increases the chances of eliminating flaws in the printed circuit boards during the initial design phase. 5. Multilayer PCB Manufacturing and Assembly The process of manufacturing and assembling multilayer PCBs is as intricate as it sounds. All processes of manufacturing and assembling multilayer PCBs require the best machines and trained technicians to pass the quality and functionality tests. Manufacturing and assembling multilayer printed circuit boards yourself is going to cost you a lot. Even the smallest of mistakes during the manufacturing and assembling process might render the entire PCB entirely useless. 6. Save Time PCBs are just a single part of the electronic device. To complete the device, many more pieces would be needed. The manufacturers of the electronic device can hire out the job of manufacturing or assembling the PCBs, which will mean they will have one less chore to do. This, in turn, will save you a lot of time which could be spent on elevating the quality of the product. 7. Experience Experience makes all the difference. It is what makes the name of any company reliable in the market. Long experience of manufacturing and assembling printed circuit boards makes the company well versed in the process and it also makes it an expert to identify design, manufacturing, assembling, and testing needs of certain applications We, at Asia Pacific Circuits, offer these benefits and so much more. For quick turn PCB assembly, PCB manufacturing and PCB designing, you can contact us anytime.

Asia Pacific Circuits Co., Ltd

  1  

vapour and phase searches for Companies, Equipment, Machines, Suppliers & Information