Technical Library | 2023-11-20 09:56:38.0
Understanding The Crucial Role Of Dust Collectors In PCB Depaneling Machines Precision is paramount in PCB manufacturing, but it must go hand in hand with cleanliness. The intrusion of dust and debris can wreak havoc on delicate electronics. This article explores the pivotal role of dust collectors, their operation, and their necessity for various PCB depaneling machines. The Dust Collector's Crucial Function Dust collectors, also known as dust extractors, play an indispensable role in PCB manufacturing. When a PCB depaneling machine or a Laser PCB Depaneling machine is in operation, it generates a significant amount of dust. The dust collector promptly engages its vacuum motor to suction fine particles off the PCB, directing them to a collector equipped with a filtration system. Which Models Of PCB Depanelers Require Dust Collector? Several PCB depaneling machines necessitate dust collectors to ensure precision and cleanliness, including: I.C.T-5700 Offline Depaneling Machine, high precision, easy manual operation, dual platform, high efficiency. I.C.T-IR350 In-line depaneling machine, high precision, rapid operation, suitable for integration into the SMT production line for Industry 4.0 and AI automated production. I.C.T-LCO350 Laser cutting ensures cutting accuracy of 0.002, ideal for precise cutting requirements. I.C.T-100A Desktop PCB depaneling machine with compact size and high precision, suitable for smaller-scale operations. The Science Behind PCB Dust Collectors To prevent charged dust particles from adhering to PCBs, PCB depaneling machines are equipped with ionizing guns. These devices emit ions that neutralize static charges, making dust particles less likely to stick to freshly cut PCBs. The Vacuum Effect: Suctioning Away Dust During PCB depaneling, a cloud of dust is produced. The dust collector utilizes a robust suction system, often powered by vacuum motors, to draw dust away from the work area. Collected dust is transported to a designated collection point within the dust collector. A Difference In Design: I.C.T-5700 Vs. I.C.T-IR350 The placement of the dust collection apparatus distinguishes PCB depaneling machines. I.C.T-5700 has a bottom-mounted system capturing falling dust, while I.C.T-IR350 features a top-mounted system preventing dust settling on the work surface. This strategic difference ensures efficient removal of dust and debris, guaranteeing a clean and precise manufacturing process. Check: If you want to learn about the comparison of I.C.T-5700 and I.C.T-IR350. The Importance Of Filter Replacement The efficiency of a dust collector relies on its filter, necessitating periodic replacement every 1-3 years, depending on usage frequency. Regular filter maintenance ensures optimal performance. Dust Collectors: Keep Your PCB Manufacturing Clean And Precise Precision in PCB manufacturing is not solely about cutting-edge machinery but also about cleanliness. If you seek a dust collector for your PCB depaneling machine, contact us today to explore your options. Ensure your operations maintain cleanliness, efficiency, and meet the high standards of modern PCB manufacturing. Don't let dust compromise your precision – let's keep it clean together!
Technical Library | 2023-11-20 09:56:42.0
Understanding The Crucial Role Of Dust Collectors In PCB Depaneling Machines Precision is paramount in PCB manufacturing, but it must go hand in hand with cleanliness. The intrusion of dust and debris can wreak havoc on delicate electronics. This article explores the pivotal role of dust collectors, their operation, and their necessity for various PCB depaneling machines. The Dust Collector's Crucial Function Dust collectors, also known as dust extractors, play an indispensable role in PCB manufacturing. When a PCB depaneling machine or a Laser PCB Depaneling machine is in operation, it generates a significant amount of dust. The dust collector promptly engages its vacuum motor to suction fine particles off the PCB, directing them to a collector equipped with a filtration system. Which Models Of PCB Depanelers Require Dust Collector? Several PCB depaneling machines necessitate dust collectors to ensure precision and cleanliness, including: I.C.T-5700 Offline Depaneling Machine, high precision, easy manual operation, dual platform, high efficiency. I.C.T-IR350 In-line depaneling machine, high precision, rapid operation, suitable for integration into the SMT production line for Industry 4.0 and AI automated production. I.C.T-LCO350 Laser cutting ensures cutting accuracy of 0.002, ideal for precise cutting requirements. I.C.T-100A Desktop PCB depaneling machine with compact size and high precision, suitable for smaller-scale operations. The Science Behind PCB Dust Collectors To prevent charged dust particles from adhering to PCBs, PCB depaneling machines are equipped with ionizing guns. These devices emit ions that neutralize static charges, making dust particles less likely to stick to freshly cut PCBs. The Vacuum Effect: Suctioning Away Dust During PCB depaneling, a cloud of dust is produced. The dust collector utilizes a robust suction system, often powered by vacuum motors, to draw dust away from the work area. Collected dust is transported to a designated collection point within the dust collector. A Difference In Design: I.C.T-5700 Vs. I.C.T-IR350 The placement of the dust collection apparatus distinguishes PCB depaneling machines. I.C.T-5700 has a bottom-mounted system capturing falling dust, while I.C.T-IR350 features a top-mounted system preventing dust settling on the work surface. This strategic difference ensures efficient removal of dust and debris, guaranteeing a clean and precise manufacturing process. Check: If you want to learn about the comparison of I.C.T-5700 and I.C.T-IR350. The Importance Of Filter Replacement The efficiency of a dust collector relies on its filter, necessitating periodic replacement every 1-3 years, depending on usage frequency. Regular filter maintenance ensures optimal performance. Dust Collectors: Keep Your PCB Manufacturing Clean And Precise Precision in PCB manufacturing is not solely about cutting-edge machinery but also about cleanliness. If you seek a dust collector for your PCB depaneling machine, contact us today to explore your options. Ensure your operations maintain cleanliness, efficiency, and meet the high standards of modern PCB manufacturing. Don't let dust compromise your precision – let's keep it clean together!
Technical Library | 2024-10-30 15:48:37.0
The difference between the three laser systems in processing for the aerospace industry.
Technical Library | 2024-09-10 18:21:20.0
A review of laser technologies CO2, Fiber and Ultraviolet used to manufacture components for the aerospace industry.
Technical Library | 2024-09-03 16:33:11.0
The differences between chemical etching and laser milling are compared.
Technical Library | 2024-11-06 16:37:36.0
The difference between the two manufacturing methods with pros and cons to using each.
Technical Library | 2015-04-16 16:11:43.0
Solder ball height inspection is essential to the detection of potential connectivity issues in semi-conductor units. Current ball height inspection tools such as laser profiling, fringe projection and confocal microscopy are expensive, require complicated setup and are slow, which makes them difficult to use in a real-time manufacturing setting. Therefore, a reliable, in-line ball height measurement method is needed for inspecting units undergoing assembly. (...) In this paper, an automatic, stereo vision based, in-line ball height inspection method is presented. The proposed method includes an imaging setup together with a computer vision algorithm for reliable, in-line ball height measurement.
Technical Library | 2013-01-11 16:51:33.0
There have been claims in the industry that laser-cut electroformed nickel foil blanks provide stencil print performance comparable to electroformed stencils. A study was established to measure the quantitative differences in performance between the two during an independent lab study.
Technical Library | 2020-03-26 14:55:29.0
This paper introduces line confocal technology that was recently developed to characterize 3D features of various surface and material types at sub-micron resolution. It enables automatic microtopographic 3D imaging of challenging objects that are difficult or impossible to scan with traditional methods, such as machine vision or laser triangulation.Examples of well-suited applications for line confocal technology include glossy, mirror-like, transparent and multi-layered surfaces made of metals (connector pins, conductor traces, solder bumps etc.), polymers (adhesives, enclosures, coatings, etc.), ceramics (components, substrates, etc.) and glass (display panels, etc.). Line confocal sensors operate at high speed and can be used to scan fast-moving surfaces in real-time as well as stationary product samples in the laboratory. The operational principle of the line confocal method and its strengths and limitations are discussed.Three metrology applications for the technology in electronics product manufacturing are examined: 1. 3D imaging of etched PCBs for micro-etched copper surface roughness and cross-sectional profile and width of etched traces/pads. 2. Thickness, width and surface roughness measurement of conductive ink features and substrates in printed electronics applications. 3. 3D imaging of adhesive dots and lines for shape, dimensions and volume in PCB and product assembly applications.
Technical Library | 2019-05-23 21:56:56.0
Automatic on-line shoe sole spraying system: automatic shoe sole spraying system, simple and convenient operation, using 3D vision positioning system. Automatic recognition and automatic generation of spraying trajectory. Robot non-contact spraying gun is used to complete the process of shoe sole spraying with maturity, stability, high speed and high precision along the predetermined trajectory. The automatic generation of spraying trajectory is the realization of shoe sole spraying technology. Shoe sole spraying characteristics: 1.Positioning System: 3D Visual Positioning 2.Components: Intelligent Robot, Laser Scanner, Industrial Computer, Gum Spraying System, Conveyor Belt, Electrical Control System, etc. 3.Spraying time: slightly different according to shoe size and spraying time Fully automatic sole spraying advantages: 1. Simple application: suitable for soles of different specifications, models and sizes 2. Faster speed: 6-8 seconds to complete sole scanning and spraying, superior to similar products at home and abroad. 3. Quality stability: gum spraying trajectory is scheduled, gum dosage is fixed, gum spraying quality is greatly improved. 4. High cost performance: the same performance, the price is only 1/3 of the same type of equipment of European brand. 5. Reduce wear and tear: glue is fully utilized and not wasted, reducing human contact with glue. Intelligent operation advantage manual only need general operation can be automated workshop, mechanical arm automatic spraying glue, accurate spraying, reduce glue waste. Environmental protection effect of long-term close contact with glue seriously affects human health and mechanical work, glue does not directly contact, do not harm the human body. Fully automatic spraying, shoe sole adhesion process for automatic spraying machine, will not cause great challenges! With the deepening of personalized shoemaking, higher requirements have been put forward for the spraying technology in shoemaking process. The method of creating spraying trajectory must be adapted to shoes of different sizes and styles. The automatic generation of spraying trajectory is one of the key technologies to realize the automation of shoe sole spraying process. The method of off-line programming and real-time generation of spraying trajectory for robots based on the three-dimensional CAD model of sole and the data of sole. A new method of generating spray trajectory by scanning the sole of shoe upper with linear structured light sensor is presented. The feasibility of the method is verified by industrial robots. Aiming at the need of generating shoe sole spray rubber trajectory based on line structured light, the format standard of IGES file of three-dimensional model of shoe sole was tested. The shoe sole contour line and the shoe sole surface were extracted, and then the offset curve of the shoe sole contour line on the shoe sole surface was calculated to obtain the spray rubber trajectory. Three-dimensional profilometer is to use structured light to obtain sole information, effectively improve the automatic shoemaking spraying process, which will help to improve the efficiency of shoemaking, improve the quality of footwear products, and promote the development of personalized shoemaking.
1 |
Industrial Sensor Vision International specializes in advanced camera technology of high resolution fast speed cameras for automation, AOI, 2-D/3-D, SPI inspection and wafer inspection.
3 Morse Road 2A
Oxford, CT USA
Phone: +1 203 592 8723