Technical Library: visitors industrial software (Page 1 of 1)

High Speed IC Chip Programming Machine

Technical Library | 2023-11-25 07:46:13.0

In the dynamic realm of Surface Mount Technology (SMT), where efficiency and precision are paramount, I.C.T, a renowned SMT equipment manufacturer, proudly unveils its latest innovation – the I.C.T-910 Automatic IC Programming System. Crafted to cater to the intricate demands of SMD chip programming, this cutting-edge device vows to redefine your programming experience and elevate production capabilities. Programming system.png The Power of IC Programming System: As a beacon of excellence in IC Programming Systems, the I.C.T-910 seamlessly integrates advanced technology with user-friendly features. This system empowers manufacturers in the SMT industry, offering versatility in programming needs by accommodating a wide range of SMD chips. Precision Programming: The I.C.T-910 boasts unparalleled precision in programming SMD chips, ensuring accuracy in every generated code. In the SMT industry, where even the slightest error can lead to setbacks, this precision is indispensable. Efficiency Redefined: Accelerate your production timelines with the I.C.T-910's efficient programming capabilities. Engineered to optimize workflows, this system ensures rapid programming without compromising quality, recognizing that time is money in the SMT industry. User-Friendly Interface: Navigating the complexities of IC programming is simplified with the I.C.T-910's intuitive user interface. Operators, even without extensive programming expertise, can harness the system's power, minimizing the learning curve and maximizing productivity. Compatibility and Adaptability: The I.C.T-910 breaks free from limitations, supporting a wide array of SMD chip models. It is a versatile solution for diverse programming requirements, allowing you to stay ahead of technological advancements. Why Choose I.C.T-910 IC Programming System? 8 sets of 32-64sit burners Nozzle: 4pcs Camera: 2pcs (Component camera + Marking camera) UPH: 2000-3000PCS/H Package type: PLCC, JLCC, SOIC, QFP, TQFP, PQFP, VQFP, TSOP, SOP, TSOPII, PSOP, TSSOP, SON, EBGA, FBGA, VFBGA, BGA, CSP, SCSP, and so on. Compatibility: Adapters provided based on customer products. Simple operation interface: Modular and layered interface with pictures and texts for easy operation. System upgrade: Free software upgrade service. Reliability: Trust in the I.C.T-910, a programming system that prioritizes reliability. Rigorous testing ensures consistent and dependable performance, reducing the risk of programming errors and downtime. Elevate Your Competitiveness: Incorporate the I.C.T-910 into your production line to elevate competitiveness in the market. Stay ahead with a programming system designed to meet the demands of the fast-paced SMT industry. Embrace the Future with I.C.T-910: In a landscape where precision, efficiency, and adaptability are non-negotiable, the I.C.T-910 Automatic IC Programming System emerges as the game-changer for SMT manufacturers. Revolutionize your programming processes, enhance productivity, and future-proof your operations with the I.C.T-910. Choose I.C.T-910 and stay ahead in the SMT industry, ushering in the next era of IC programming excellence.

I.C.T ( Dongguan ICT Technology Co., Ltd. )

Revolutionize PCB Manufacturing with SMT Dispensing Machines

Technical Library | 2023-12-18 11:33:57.0

Elevate your electronic manufacturing game with the I.C.T-D600 SMT Dispensing Machine! Precision, safety, and efficiency in one powerful solution. ​In the dynamic realm of electronic manufacturing, precision and efficiency are not just preferences but essential requirements. Introducing the I.C.T-D600, an automatic glue dispenser machine engineered to enhance production processes across various applications. From chip encapsulation to PCB assembly, SMT red-glue dispensing, LED lens production, and medical device creation, SMT dispensing machine is a versatile solution tailored to meet the demands of the industry. Essential Attributes Of The I.C.T-D600 Automatic Glue Dispenser Machine 1. Compliance with European Safety Standards: The I.C.T-D600 SMT dispensing machine prioritizes not only efficiency but also safety, boasting compliance with European safety standards and holding a CE certificate. This ensures a secure and reliable manufacturing environment, aligning with global quality benchmarks. 2. International Component Quality: Internationally renowned components form the core of the D600 SMT dispensing machine. From Panasonic servomotors to MINTRON CCD, each element is carefully selected, guaranteeing high performance and durability. This commitment to quality components results in a machine that operates seamlessly, reducing downtime and maintenance costs. 3. Impressive Performance Metrics: The SMT dispensing machinedoesn't just meet expectations; it surpasses them with exceptional performance metrics: Maximum Guide Rail Speed: 400mm/s Fastest Injection Valve Speed: 20 spots/sec Dispensing Accuracy: ±0.02mm Repeated Accuracy: ±0.01mm Machine Characteristics: Core Part – Jet Valve The non-contact jet dispensing method ensures high-speed operation (max jet speed: 20 spots/second), high accuracy with a minimum dispensing volume of 5nl, and flexibility with extremely small dispensing volumes. The thermostatic system for the flow channel and sprayer ensures uniform glue temperature, resulting in low maintenance costs and an extended service life. Enhanced Capacity: Non-contact jet dispensing eliminates the need for Z-axis motion. Integrated temperature control technology reduces manual intervention. Automatic glue compensation minimizes artificial regulation time. Dual-track design reduces waiting time. Automatic visual location identification and compensation. Non-contact height detection with laser reduces height detection time. Flexibility: Capable of handling substrates or backings of various sizes. Optional heating module. Independent control of dual tracks with user-friendly software. Fast switching between different product lines. Universal platform suitable for various processes with different glues

I.C.T ( Dongguan ICT Technology Co., Ltd. )

An Effective Design of Experiment Strategy to Optimize SMT Processes

Technical Library | 2010-04-22 14:55:51.0

It is now widely accepted that using designed experiments is the most effective way to optimize surface mount technology (SMT) processes. This situation begs the question "what is an effective strategy in implementing this powerful tool?" This paper will present such a strategy that incorporates Taguchi's approach for screening, full factorial analysis for optimization and central composite design for precise modeling. We will present these techniques using MINITABTM Release 13 statistical software and printed circuit board industry applications.

Indium Corporation

A Review and Analysis of Automatic Optical Inspection and Quality Monitoring Methods in Electronics Industry

Technical Library | 2022-06-27 16:50:26.0

Electronics industry is one of the fastest evolving, innovative, and most competitive industries. In order to meet the high consumption demands on electronics components, quality standards of the products must be well-maintained. Automatic optical inspection (AOI) is one of the non-destructive techniques used in quality inspection of various products. This technique is considered robust and can replace human inspectors who are subjected to dull and fatigue in performing inspection tasks. A fully automated optical inspection system consists of hardware and software setups. Hardware setup include image sensor and illumination settings and is responsible to acquire the digital image, while the software part implements an inspection algorithm to extract the features of the acquired images and classify them into defected and non-defected based on the user requirements. A sorting mechanism can be used to separate the defective products from the good ones. This article provides a comprehensive review of the various AOI systems used in electronics, micro-electronics, and opto-electronics industries. In this review the defects of the commonly inspected electronic components, such as semiconductor wafers, flat panel displays, printed circuit boards and light emitting diodes, are first explained. Hardware setups used in acquiring images are then discussed in terms of the camera and lighting source selection and configuration. The inspection algorithms used for detecting the defects in the electronic components are discussed in terms of the preprocessing, feature extraction and classification tools used for this purpose. Recent articles that used deep learning algorithms are also reviewed. The article concludes by highlighting the current trends and possible future research directions.

Institute of Electrical and Electronics Engineers (IEEE)

Automated Fluid Dispensing for Epoxy

Technical Library | 2015-06-30 16:07:12.0

Robotics for automated fluid dispensing have the ability to apply a variety of materials including epoxy, silicone, and acrylic coatings. These materials are extensively used in today’s high-speed fluid dispensers for the electronics industry. Whether a dispenser is applying epoxy or another material, the central concept for applying any form of material remains the same. Specific points of an item being dispensed onto are programmed into the dispensing system. The automated fluid dispensers software interprets the programmed information and keeps the travel path in memory. A robotic arm moves fluid dispensing nozzles along this travel path and applies epoxy onto the surface of the item with precise accuracy. Machine speed can be adjusted to emit varying amounts of epoxy. The overall application process is auto-regulating and will not be disrupted.

ETS - Energy Technology Systems, Inc.

A Machine Vision Based Automatic Optical Inspection System for Measuring Drilling Quality of Printed Circuit Boards

Technical Library | 2024-04-29 21:39:52.0

In this paper, we develop and put into practice an Automatic Optical Inspection (AOI) system based on machine vision to check the holes on a printed circuit board (PCB). We incorporate the hardware and software. For the hardware part, we combine a PC, the three-axis positioning system, a lighting device and CCD cameras. For the software part, we utilize image registration, image segmentation, drill numbering, drill contrast, and defect displays to achieve this system. Results indicated that an accuracy of 5µm could be achieved in errors of the PCB holes allowing comparisons to be made. This is significant in inspecting the missing, the multi-hole and the incorrect location of the holes. However, previous work only focusses on one or other feature of the holes. Our research is able to assess multiple features: missing holes, incorrectly located holes and excessive holes. Equally, our results could be displayed as a bar chart and target plot. This has not been achieved before. These displays help users analyze the causes of errors and immediately correct the problems. Additionally, this AOI system is valuable for checking a large number of holes and finding out the defective ones on a PCB. Meanwhile, we apply a 0.1mm image resolution which is better than others used in industry. We set a detecting standard based on 2mm diameter of circles to diagnose the quality of the holes within 10 seconds.

National Cheng Kung University

Digital manufacturing for traceability: The way to higher product quality and better warranty management

Technical Library | 2010-08-26 21:06:17.0

Driven by high-profile regulations compliance like the TREAD Act, warranty management has become a hot topic across industries worldwide. Recalls are costly and time-consuming events that should be avoided entirely. But without adequate process traceability and product genealogy, too many customers will get defective products and too many products will be recalled for repair or replacement even though they are not defective. Both scenarios have enormous implications for the quality-conscious manufacturer that gets rated on the number of recalls it performs - not to mention the enormous direct costs. The core issue is visibility into product quality.

ASM Assembly Systems GmbH & Co. KG

Printed Circuit Board Assembly & Choosing a Vendor

Technical Library | 2019-10-24 06:29:59.0

Making your novel electronic item design ready for mass fabrication and printed circuit board assembly consists of a lot of steps as well as risks. I will provide a few recommendations about how to neglect pricey errors and how to reduce the time to promote your novel item designs. You can hire printed circuit board assembly services for this. As soon as you have accomplished your product as well as printed circuit board design, you wish to get started developing prototypes prior to you commit to big fabrication volume. A lot of design software packages, for instance, PCB layout design software, as well as an industrial design software program, possess simulation potentials incorporated. Carrying out a simulation facilitates curtailing numerous design mistakes prior to the first prototype is developed. In case you are developing an intrusive item, you might desire to think about a modular design wherein all of the chief functionalities are situated in individual modules. All through your testing, you could then swap modules that don’t cater to the design limits. Spinning individual modules would be swifter and more cost-effective in comparison to spinning a complete design. Counting on the design intricacy, you can mull over manually mounting printed circuit board elements to bank dollars. Nonetheless, for medium to big intricacy this procedure likely to be very time taking, typically in case you wish to create numerous prototypes. Hence it makes sense thinking about a contract manufacturer for the assembly. Whilst running miniature quantity fabrication runs, the fabrication setup expenditure will usually control the by and large prototype constructs expenditure. Whilst seeking a subcontractor, it is finest to choose a vendor that focuses on prototype builds to reduce the cost. Prototype printed circuit board fabricators characteristically join the circuit boards of a number of clients which efficiently shares the setup expenditure in the midst of some customers. The disadvantage is that you would characteristically only be able to want among numerous standard printed circuit board material thicknesses as well as sizes. Apart from choosing a supplier with low setup expenditure, choosing a firm that would moreover be capable to manage your whole fabrication runs curtails mistakes because switching fabricators have the chance of errors owing to a specific supplier interpreting fabrication design data in a different way. This manner your design is already translated into the particular machine data that implies little or no setup expenditure for your final fabrication. A few PCB manufacturers also provide printed circuit board design services that are awesome plus if you do not possess experience with the design. Moreover, these vendors would be capable to help you in case there are issues with your design folders and be capable to detect issues prior to the fabrication.

Optima Technology Associates, Inc.

  1  

visitors industrial software searches for Companies, Equipment, Machines, Suppliers & Information

ISVI - Industrial Sensor Vision International Corporation
ISVI - Industrial Sensor Vision International Corporation

Industrial Sensor Vision International specializes in advanced camera technology of high resolution fast speed cameras for automation, AOI, 2-D/3-D, SPI inspection and wafer inspection.

Manufacturer

3 Morse Road 2A
Oxford, CT USA

Phone: +1 203 592 8723

convection smt reflow ovens

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.
See Your 2024 IPC Certification Training Schedule for Eptac

Wave Soldering 101 Training Course
SMT Machines

Training online, at your facility, or at one of our worldwide training centers"
Void Free Reflow Soldering

High Throughput Reflow Oven
Hot selling SMT spare parts and professional SMT machine solutions

Low-cost, self-paced, online training on electronics manufacturing fundamentals