Technical Library: void leads (Page 1 of 2)

THE LAST WILL AND TESTAMENT OF THE BGA VOID

Technical Library | 2023-01-17 17:22:28.0

The impact of voiding on the solder joint integrity of ball grid arrays (BGAs)/chip scale packages (CSPs) can be a topic of lengthy and energetic discussion. Detailed industry investigations have shown that voids have little effect on solder joint integrity unless they fall into specific location/geometry configurations. These investigations have focused on thermal cycle testing at 0°C-100°C, which is typically used to evaluate commercial electronic products. This paper documents an investigation to determine the impact of voids in BGA and CSP components using thermal cycle testing (-55°C to +125°C) in accordance with the IPC- 9701 specification for tin/lead solder alloys. This temperature range is more typical of military and other high performance product use environments. A proposed BGA void requirement revision for the IPC-JSTD-001 specification will be extracted from the results analysis.

Heller Industries Inc.

Void Reduction in Bottom Terminated Components Using Vacuum Assisted Reflow

Technical Library | 2019-07-10 23:36:14.0

Pockets of gas, or voids, trapped in the solder interface between discrete power management devices and circuit assemblies are, unfortunately, excellent insulators, or barriers to thermal conductivity. This resistance to heat flow reduces the electrical efficiency of these devices, reducing battery life and expected functional life time of electronic assemblies. There is also a corresponding increase in current density (as the area for current conduction is reduced) that generates additional heat, further leading to performance degradation.

Heller Industries Inc.

Avoiding the Solder Void

Technical Library | 2013-02-08 22:56:47.0

Solder voiding is present in the majority solder joints and is generally accepted when the voids are small and the total void content is minimal. X-ray methods are the predominate method for solder void analysis but this method can be quite subjective for non grid array components due to the two dimensional aspects of X-ray images and software limitations. A novel method of making a copper "sandwich" to simulate under lead and under component environs during reflow has been developed and is discussed in detail. This method has enabled quantitative solder paste void analysis for lead free and specialty paste development and process refinement. Profile and paste storage effects on voiding are discussed. Additionally an optimal design and material selection from a solder void standpoint for a heat spreader on a BCC (Bumpered Chip Carrier) has been developed and is discussed.

Heraeus

Fill the Void II: An Investigation into Methods of Reducing Voiding

Technical Library | 2018-10-03 20:41:44.0

Voids in solder joints plague many electronics manufacturers. Do you have voids in your life? We have good news for you, there are many excellent ways to "Fill the Void." This paper is a continuation of previous work on voiding in which the following variables were studied: water soluble lead-free solder pastes, a variety of stencil designs, and reflow profiles. Quad Flat No-Lead (QFN) component thermal pads were used as the test vehicle. The voiding results were summarized and recommendations were made for reduction of voiding.

FCT ASSEMBLY, INC.

Fill the Void IV: Elimination of Inter-Via Voiding

Technical Library | 2019-10-10 00:26:28.0

Voids are a plague to our electronics and must be eliminated! Over the last few years we have studied voiding in solder joints and published three technical papers on methods to "Fill the Void." This paper is part four of this series. The focus of this work is to mitigate voids for via in pad circuit board designs. Via holes in Quad Flat No-Lead (QFN) thermal pads create voiding issues. Gasses can come out of via holes and rise into the solder joint creating voids. Solder can also flow down into the via holes creating gaps in the solder joint. One method of preventing this is via plugging. Via holes can be plugged, capped, or left open. These via plugging options were compared and contrasted to each other with respect to voiding. Another method of minimizing voiding is through solder paste stencil design. Solder paste can be printed around the via holes with gas escape routes. This prevents gasses from via holes from being trapped in the solder joint. Several stencil designs were tested and voiding performance compared and contrasted. In many cases voiding will be reduced only if a combination of mitigation strategies are used. Recommendations for combinations of via hole plugging and stencil design are given. The aim of this paper is to help the reader to "Fill the Void."

FCT ASSEMBLY, INC.

Novel Approach to Void Reduction Using Microflux Coated Solder Preforms for QFN/BTC Packages that Generate Heat

Technical Library | 2019-08-07 22:56:45.0

The requirement to reconsider traditional soldering methods is becoming more relevant as the demand for bottom terminated components (QFN/BTC) increases. Thermal pads under said components are designed to enhance the thermal and electrical performance of the component and ultimately allow the component to run more efficiently. Additionally, low voiding is important in decreasing the current path of the circuit to maximize high speed and RF performances. The demand to develop smaller, more reliable, packages has seen voiding requirements decrease below 15 percent and in some instances, below 10 percent.Earlier work has demonstrated the use of micro-fluxed solder preforms as a mechanism to reduce voiding. The current work builds upon these results to focus on developing an engineered approach to void reduction in leadless components (QFN) through increasing understanding of how processing parameters and a use of custom designed micro-fluxed preforms interact. Leveraging the use of a micro-fluxed solder preform in conjunction with low voiding solder paste, stencil design, and application knowhow are critical factors in determining voiding in QFN packages. The study presented seeks to understand the vectors that can contribute to voiding such as PCB pad finish, reflow profile, reflow atmosphere, via configuration, and ultimately solder design.A collaboration between three companies consisting of solder materials supplier, a power semiconductor supplier, and an electronic assembly manufacturer worked together for an in-depth study into the effectiveness of solder preforms at reducing voiding under some of the most prevalent bottom terminated components packages. The effects of factors such as thermal pad size, finish on PCB, preform types, stencil design, reflow profile and atmosphere, have been evaluated using lead-free SAC305 low voiding solder paste and micro-fluxed preforms. Design and manufacturing rules developed from this work will be discussed.

Alpha Assembly Solutions

Reliability Study of Bottom Terminated Components

Technical Library | 2015-07-14 13:19:10.0

Bottom terminated components (BTC) are leadless components where terminations are protectively plated on the underside of the package. They are all slightly different and have different names, such as QFN (quad flat no lead), DFN (dual flat no lead), LGA (land grid array) and MLF (micro lead-frame. BTC assembly has increased rapidly in recent years. This type of package is attractive due to its low cost and good performance like improved signal speeds and enhanced thermal performance. However, bottom terminated components do not have any leads to absorb the stress and strain on the solder joints. It relies on the correct amount of solder deposited during the assembly process for having a good solder joint quality and reliable reliability. Voiding is typically seen on the BTC solder joint, especially on the thermal pad of the component. Voiding creates a major concern on BTC component’s solder joint reliability. There is no current industry standard on the voiding criteria for bottom terminated component. The impact of voiding on solder joint reliability and the impact of voiding on the heat transfer characteristics at BTC component are not well understood. This paper will present some data to address these concerns.

Flex (Flextronics International)

Controlling Moisture in Printed Circuit Boards

Technical Library | 2019-05-01 23:18:27.0

Moisture can accelerate various failure mechanisms in printed circuit board assemblies. Moisture can be initially present in the epoxy glass prepreg, absorbed during the wet processes in printed circuit board manufacturing, or diffuse into the printed circuit board during storage. Moisture can reside in the resin, resin/glass interfaces, and micro-cracks or voids due to defects. Higher reflow temperatures associated with lead-free processing increase the vapor pressure, which can lead to higher amounts of moisture uptake compared to eutectic tin-lead reflow processes. In addition to cohesive or adhesive failures within the printed circuit board that lead to cracking and delamination, moisture can also lead to the creation of low impedance paths due to metal migration, interfacial degradation resulting in conductive filament formation, and changes in dimensional stability. Studies have shown that moisture can also reduce the glass-transition temperature and increase the dielectric constant, leading to a reduction in circuit switching speeds and an increase in propagation delay times. This paper provides an overview of printed circuit board fabrication, followed by a brief discussion of moisture diffusion processes, governing models, and dependent variables. We then present guidelines for printed circuit board handling and storage during various stages of production and fabrication so as to mitigate moisture-induced failures.

CALCE Center for Advanced Life Cycle Engineering

The Last Will And Testament of the BGA Void

Technical Library | 2015-01-05 17:38:26.0

The impact of voiding on the solder joint integrity of ball grid arrays (BGAs)/chip scale packages (CSPs) can be a topic of lengthy and energetic discussion. Detailed industry investigations have shown that voids have little effect on solder joint integrity unless they fall into specific location/geometry configurations. These investigations have focused on thermal cycle testing at 0°C-100°C, which is typically used to evaluate commercial electronic products. This paper documents an investigation to determine the impact of voids in BGA and CSP components using thermal cycle testing (-55°C to +125°C) in accordance with the IPC-9701 specification for tin/lead solder alloys. This temperature range is more typical of military and other high performance product use environments. A proposed BGA void requirement revision for the IPC-JSTD-001 specification will be extracted from the results analysis.

Rockwell Collins

Influence of Pd Thickness on Micro Void Formation of Solder Joints in ENEPIG Surface Finish

Technical Library | 2012-12-13 21:20:05.0

First published in the 2012 IPC APEX EXPO technical conference proceedings. We investigated the micro-void formation of solder joints after reliability tests such as preconditioning (precon) and thermal cycle (TC) by varying the thickness of Palladium (Pd) in Electroless Nickel / Electroless Palladium / Immersion Gold (ENEPIG) surface finish. We used lead-free solder of Sn-1.2Ag-0.5Cu-Ni (LF35). We found multiple micro-voids of less than 10 µm line up within or above the intermetallic compound (IMC) layer. The number of micro-voids increased with the palladium (Pd) layer thickness. Our results revealed that the micro-void formation should be related to (Pd, Ni)Sn4 phase resulted from thick Pd layer. We propose that micro-voids may form due to either entrapping of volatile gas by (Pd, Ni)Sn4 or creeping of (Pd, Ni)Sn4.

Samsung Electro-Mechanics

  1 2 Next

void leads searches for Companies, Equipment, Machines, Suppliers & Information

Best SMT Reflow Oven

World's Best Reflow Oven Customizable for Unique Applications
Blackfox IPC Training & Certification

Stencil Printing 101 Training Course
best pcb reflow oven

High Precision Fluid Dispensers
Win Source Online Electronic parts

Software for SMT placement & AOI - Free Download.
SMT feeders

Training online, at your facility, or at one of our worldwide training centers"