Technical Library | 2024-02-02 07:48:31.0
Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer In today's rapidly evolving electronics manufacturing landscape, optimizing efficiency, cost-effectiveness, and precision remains paramount. Businesses engaged in producing industrial control boards, computer motherboards, mobile phone motherboards, and mining machine boards face ongoing challenges in streamlining production processes. The integration of expensive equipment strains budgets, making the creation of an efficient, cost-effective high-speed SMT line a daunting task. However, a solution exists that seamlessly combines these elements into a singular, high-performance, and cost-effective SMT line. Let's delve into the specifics. A Comprehensive High-Speed SMT Line Our innovative solution amalgamates two pivotal components: a cutting-edge SMT (Surface Mount Technology) production line and a laser cutting line equipped with a depanelizer. The SMT Production Line The high-speed SMT line comprises several essential components, each fulfilling a unique role in the manufacturing process: 1. PCB Loader: This initial stage involves loading boards onto the production line with utmost care. Our Board Loader prioritizes safety, incorporating various safety light curtains and sensors to promptly halt operations and issue alerts in case of any anomalies. 2. Laser Marking Machine: Every PCB receives a unique two-dimensional code or barcode, facilitating comprehensive traceability. Despite the high-temperature laser process potentially leading to dust accumulation on PCB surfaces, our dedicated PCB Surface Cleaner swiftly addresses this issue. 3. SMT Solder Paste Printer: This stage involves applying solder paste to the boards, a fundamental step in the manufacturing process. 4. SPI (Solder Paste Inspection): Meticulous inspections are conducted at this stage. Boards passing inspection proceed through the NG (No Good) Buffer Conveyor to the module mounters. Conversely, "No Good" results prompt storage of PCBs in the NG Buffer Conveyor, capable of accommodating up to 25 PCBs. Operators can retrieve these NG boards for rework after utilizing our specialized PCB Mis Cleaner to remove solder paste. 5. Module Mounters: These machines excel in attaching small and delicate components, necessitating precision and expertise in the module mounting process. 6. Standard Pick And Place Machines: The selection of these machines is contingent upon your specific BOM (Bill of Materials) list. 7. Pre-Reflow AOI (Automated Optical Inspection): Boards undergo examination for component quality at this stage. Detected issues prompt the Sorting Conveyor to segregate boards for rework. 8. Reflow Oven: Boards undergo reflow soldering, with our Lyra series reflow ovens recommended for their outstanding features, including nitrogen capability, flux recycling, and water cooling function, ensuring impeccable soldering results. 9. Post-Reflow AOI: This stage focuses on examining soldering quality. Detected defects prompt the Sorting Conveyor to segregate boards for further inspection or rework. Any identified defects are efficiently addressed with the BGA rework station, maintaining the highest quality standards. 10. Laser Depanelizer: Boards advance to the laser depanelizer, where precision laser cutting, often employing green light for optimal results, ensures smoke-free, highly accurate separation of boards. 11. PCB Placement Machine: Cut boards are subsequently managed by the PCB Placement Machine, arranging them as required. With this, all high-speed SMT line processes are concluded. Efficiency And Output This production line demonstrates exceptional productivity when manufacturing motherboards with approximately 3000 electronic components, boasting the potential to assemble up to 180 boards within a single hour. Such efficiency not only enhances output but also ensures cost-effectiveness and precision in your manufacturing processes. At I.C.T, we specialize in crafting customized SMT production line solutions tailored to your product and specific requirements. Our equipment complies with European safety standards and holds CE certificates. For inquiries or to explore our exemplary post-sales support, do not hesitate to contact us. The I.C.T team is here to elevate your electronics manufacturing to new heights of efficiency and cost-effectiveness.
Technical Library | 2019-12-12 02:43:44.0
Today we discuss the reason that causes temperature humidity chamber to alarm,In most cases, the equipment alarm is caused by the improper operation in the process of use, which mainly includes following reasons:that are refrigeration system, temperature system and circulating system. First, Refrigeration system 1, refrigeration compressor overpressure alarm. If the refrigerant pressure exceeds the set value, it will stop and alarm at the same time. At this time, the fault must be eliminated and then manually reset. 2, short phase power supply, phase sequence alarm. When the external power supply of the equipment is out of phase or the phase sequence is changed, it will stop and alarm at the same time. 3. The circulating cooling water is short of water to alarm. When the water pressure of the cooling circulating water system is insufficient, it will stop and alarm at the same time, and it must wait for the fault to be eliminated and reset at the same time before it could run normally. 4, refrigeration compressor overheating alarm. When the coil of the compressor is overheated and the power supply of the line is not normal, it will stop and alarm at the same time. Second, Temperature system 1, the overtemperature alarm in the chamber. The sensors in the channel and the sample area are equipped with overtemperature protection devices, and there are also overtemperature protecter on the control panel. When the temperature in the working chamber exceeds the setting value on the controller, it will stop and alarm. 2. sample overtemperature protection. When the temperature in the sample area exceeds the protection temperature set by the controller, it will stop and alarm at the same time. The overtemperature protection of the sample is divided into upper limit protection and lower limit protection, which can be set according to the demand, Third,Circulating system 1. The alarm is caused by the overheating of the circulating fan. When the coil of the fan is over-heated, the alarm will be stopped at the same time. 2. The fan over-current alarm. When the current of the fan exceeds the allowable value, the alarm is stopped at the same time, and the normal operation can only be carried out after the fault maintenance of the overcurrent is completed. This is what we talk about today,if you have more questions,let us know.
Technical Library | 2019-05-08 00:04:49.0
It is necessary to know there are some faults that cannot be entirely avoided during the use of temperature and humidity test chamber, but how to deal with them in time is a problem that needs to be paid attention to.Here mainly explain the temperature and humidity test chamber compressor in the reason for the water, and how to deal with it. Reason: water comes from air, because there is always water in the air, known as humidity, which is compressed into supersaturated air and then analyzed to become liquid. The oil comes from the lubrication system of the compressor, possibly because the wear clearance of the mechanism increases, and the lubricating oil will escape into the cylinder. Solution: after the compressor is removed from the temperature and humidity test chamber, with a larger gas storage tank, the oil and water will naturally settle down to the bottom of the jar, and we need to discharge regularly to reduce the oil and water content in the compressed air. Of course, you can also use filters and other things to further reduce the content of oil and water. if you need to know more details about climatic chamber, keep an eye on our website www.climatechambers.com
Technical Library | 2019-07-02 23:02:05.0
The introduction of lead-free solders resulted in a selection of different chemistries for solder pastes. The higher melting points of lead-free alloys required thermal heat resistant rosin systems and activators that are active at elevated temperatures. As a result, more frequent maintenance of the filtration systems is required and machine downtime is increased.Last year a different method of cleaning reflow ovens was introduced. Instead of cooling down the process gasses to condensate the residues, a catalyst was used to maintain the clean oven. Catalytic thermal oxidation of residues in the nitrogen atmosphere resulted in cleaner heating zones. The residues were transformed into carbon dioxide. This remaining small amount of char was collected in the catalyst. In air ovens the catalyst was not seen as a beneficial option because the air extracted out of the oven was immediately exhausted into the environment. When a catalyst is used in an air environment there is not only the carbon dioxide residues, but also water. When a catalyst is used in an air reflow oven the question is where the water is going to. Will it condensate in the process part of the oven or is the gas temperature high enough to keep it out of the process area? A major benefit of using a catalyst to clean the air before it is exhausted into the environment is that the air pollution is reduced dramatically. This will make environmental engineers happy and result in less pollution of our nature. Apart from this, the exhaust tubes remain clean which reduces the maintenance of air ovens.This paper will give more detailed information of catalyst systems during development and performance in production lines.
Technical Library | 1999-05-06 11:42:16.0
The most reliable and well-designed electronic device can malfunction or fail if it overheats. Considering thermal issues early in the design process results in a thermally conscious system layout and minimizes costs through the use of passive cooling and off-the-shelf components. When thermal issues are left until completion of the design, the only remaining solution may be a costly custom heat sink that requires all the space available. Incorporating a heat sink or a fan into a product after it is fully developed can be expensive, and still may not provide sufficient cooling of the device.
Technical Library | 2008-03-25 18:15:54.0
Thin film thermoelectric devices offer a fundamentally new operating regime for integrated, active cooling solutions and localized thermal management, yet the assembly methodology used to implement these devices is fully compatible with existing surface mount approaches. In order to take advantage of these unique characteristics, thin film thermoelectric devices need to be designed for the appropriate thermal and form-factor environments, with system-level constraints carefully considered as an integral part of the overall design process.
Technical Library | 2014-07-17 17:01:10.0
Embedded computing systems used in many military and avionics applications are trending toward higher heat fluxes, and as a result performance is being hindered by thermal limitations. This is intensified by the high ambient conditions experience by today’s modern warfighter. In many applications liquid cooling is replacing air flow through chassis for both thermal and environmental benefits(...) This paper outlines a series of passive thermal improvements which are easily integrated into legacy, or existing, systems and can provide a 3-4x increase in dissipated power.
Technical Library | 2019-09-25 04:36:01.0
What is the main function of hot air dry oven? Drying ovens are devices used to remove moisture and other solvents from the items placed inside them through a forced convection process, collecting it elsewhere so that the object becomes dehydrated. A drying oven causes objects to dry out through evaporation. Drying ovens use convection heating,also called air forced, in which the object is heated through air currents. Water from the object escapes into the air, raising the humidity level and causing the semi-solid membranes inside the oven to absorb the water. The end result is that the oven removes water from the object being dried, leaving it dehydrated. Drying ovens contain a system for forcing convection currents to develop, usually either a fan or turbine, which aids in the heating and drying process by ensuring that the hot air circulates,many ovens are equipped with an adjustable ventilation system that allows the user to ensure that the system has an adequate air supply. For details,pls visit our website: https://climatechambers.com/articles&latestnews/what-is-the-main-function-of-hot-air-dry-oven.html
Technical Library | 2016-08-11 01:21:34.0
Be it a residential building, hospital, shopping mall, hotel, school, educational institution or any kind of a building, the security of the building is a prime facet to get a complete building solution. This also includes protecting the building, its assent and the human life from the airborne toxic industrial chemical, radiological and biological attacks or any accidental release apart from fire, water, earthquake and other security concerns. For these high value security solutions, the upgraded technology for the building safety system is now a top priority, especially in the commercial building sector and residential constructions. To introduce a completely new concept and a unique solution, it is necessary to focus on the dynamic electronic design and manufacturing solution in consultation with the custom PCB experts.
Technical Library | 2020-07-02 13:16:32.0
Principle of shielding 1 The principle of shielding is creating a conductive layer completely surrounding the object you want to shield. This was invented by Michael Faraday and this system is known as a Faraday Cage. 2 Ideally, the shielding layer will be made up of conductive sheets or layers of metal that are connected by means of welding or soldering, without any interruptions. The shielding is perfect when there is no difference in conductivity between the used materials. When dealing with frequencies below 30 MHz, the metal thickness affects shielding effectiveness. We also offer a range of shielding methods for plastic enclosures. A complete absence of interruptions is not a realistic goal since the Faraday cage will have to be opened from time to time so electronics, equipment or people can be moved in or out. Openings are also needed for displays, ventilation, cooling, power supply, signals etc. 3 Shielding works in both directions, items inside the shielded room are shielded from outside influences. (Fig. 3.1)