Technical Library | 2007-07-19 15:15:11.0
ROSA is a surface restoration technique that removes hard to reduce species like metal oxides or sulfides. At the time of its development, the focus was on solderability and compliance to environmental regulations. Industry trends and regulatory changes as a result of the Montreal Protocol were the driver for much of the concern over environmental compliance. The result was an increase in the development of no-clean and water soluble fluxes and the removal of halogenated cleaning chemistries.
Technical Library | 2013-07-11 15:22:40.0
This research paper will focus on the effect of various parameters that are used to reball a BGA and their effect on the overall shear strength. Factors that will be looked at include the type of BGA (SAC305 or 63Sn/37Pb), the alloy used to reball (SAC405 or 63Sn/37Pb), the type of flux used (Water Soluble or No Clean), and the environment in which reballing takes place (Nitrogen or Ambient).
Technical Library | 2009-07-09 17:23:07.0
Sometimes you just cannot clean with water. Good examples of this are: circuits with batteries attached, cleaning prior to encapsulation, ionic cleanliness testing, and non-sealed or other water sensitive parts. High impedance or high voltage circuits need to be cleaned of flux residues and other soils to maximize performance and reliability and, in these types of circuits; water can be just as detrimental as fluxes. When solvent cleaning is called for, Hansen solubility parameters can help target the best solvent or solvent blend to remove the residue of interest, and prevent degradation of the assembly being manufactured. In short, using this approach can time, manufacturing cost and reduce product liability.
Technical Library | 1999-05-07 10:47:00.0
White residue remaining after cleaning circuit board assemblies can be caused by a variety of chemicals and reactions. Rosin and water-soluble fluxes, circuit board resins and epoxies, component materials and other contamination all contribute to this complex chemistry. This paper discusses many of the sources of the residues that seem to be an ever-increasing occurrence.
Technical Library | 2017-03-22 20:58:08.0
Water soluble lead-free solder paste is widely used in today’s SMT processes, but the industry is slowly moving away from water soluble solder pastes in favor of no-clean solder pastes. This shift in usage of solder paste is driven by an effort to eliminate the water wash process. Some components cannot tolerate water wash and elimination of water washing streamlines the SMT process. Despite this shift, certain applications lend themselves to the use of water soluble solder paste.This paper details the research and development of a new water soluble lead-free solder paste which improves on the performance characteristics of existing technologies.
Technical Library | 2020-10-27 02:02:17.0
Solder powder size is a popular topic in the electronics industry due to the continuing trend of miniaturization of electronics. The question commonly asked is "when should we switch from Type 3 to a smaller solder powder?" Solder powder size is usually chosen based on the printing requirements for the solder paste. It is common practice to use IPC Type 4 or 5 solder powders for stencil designs that include area ratios below the recommended IPC limit of 0.66. The effects of solder powder size on printability of solder paste have been well documented. The size of the solder powder affects the performance of the solder paste in other ways. Shelf life, stencil life, reflow performance, voiding behavior, and reactivity / stability are all affected by solder powder size. Testing was conducted to measure each of these solder paste performance attributes for IPC Type 3, Type 4, Type 5 and Type 6 SAC305 solder powders in both water soluble and no clean solder pastes. The performance data for each size of solder powder in each solder paste flux was quantified and summarized. Guidance for choosing the optimal size of solder powder is given based on the results of this study.
Technical Library | 2023-05-22 16:42:56.0
Nano-coatings are applied to solder paste stencils with the intent of improving the solder paste printing process. Do they really make a noticeable improvement? The effect of Nano-coatings on solder paste print performance was investigated. Transfer efficiencies were studied across aperture sizes ranging from 0.30 to 0.80 area ratio. Also investigated were the effects of Nano-coatings on transfer efficiencies of tin-lead, lead-free, water soluble, no-clean, and type 3, 4, and 5 solder pastes. Solder paste print performance for each Nano-coating was summarized with respect to all of these variables.
1 |