Technical Library | 2017-03-22 20:58:08.0
Water soluble lead-free solder paste is widely used in today’s SMT processes, but the industry is slowly moving away from water soluble solder pastes in favor of no-clean solder pastes. This shift in usage of solder paste is driven by an effort to eliminate the water wash process. Some components cannot tolerate water wash and elimination of water washing streamlines the SMT process. Despite this shift, certain applications lend themselves to the use of water soluble solder paste.This paper details the research and development of a new water soluble lead-free solder paste which improves on the performance characteristics of existing technologies.
Technical Library | 2023-05-22 16:42:56.0
Nano-coatings are applied to solder paste stencils with the intent of improving the solder paste printing process. Do they really make a noticeable improvement? The effect of Nano-coatings on solder paste print performance was investigated. Transfer efficiencies were studied across aperture sizes ranging from 0.30 to 0.80 area ratio. Also investigated were the effects of Nano-coatings on transfer efficiencies of tin-lead, lead-free, water soluble, no-clean, and type 3, 4, and 5 solder pastes. Solder paste print performance for each Nano-coating was summarized with respect to all of these variables.
Technical Library | 2018-10-03 20:41:44.0
Voids in solder joints plague many electronics manufacturers. Do you have voids in your life? We have good news for you, there are many excellent ways to "Fill the Void." This paper is a continuation of previous work on voiding in which the following variables were studied: water soluble lead-free solder pastes, a variety of stencil designs, and reflow profiles. Quad Flat No-Lead (QFN) component thermal pads were used as the test vehicle. The voiding results were summarized and recommendations were made for reduction of voiding.
Technical Library | 2020-10-27 02:02:17.0
Solder powder size is a popular topic in the electronics industry due to the continuing trend of miniaturization of electronics. The question commonly asked is "when should we switch from Type 3 to a smaller solder powder?" Solder powder size is usually chosen based on the printing requirements for the solder paste. It is common practice to use IPC Type 4 or 5 solder powders for stencil designs that include area ratios below the recommended IPC limit of 0.66. The effects of solder powder size on printability of solder paste have been well documented. The size of the solder powder affects the performance of the solder paste in other ways. Shelf life, stencil life, reflow performance, voiding behavior, and reactivity / stability are all affected by solder powder size. Testing was conducted to measure each of these solder paste performance attributes for IPC Type 3, Type 4, Type 5 and Type 6 SAC305 solder powders in both water soluble and no clean solder pastes. The performance data for each size of solder powder in each solder paste flux was quantified and summarized. Guidance for choosing the optimal size of solder powder is given based on the results of this study.
1 |