Technical Library: wave solder flux gravity (Page 1 of 2)

Precision Control in Electronic Assembly: Selective Wave Soldering Machine

Technical Library | 2024-02-26 09:08:23.0

Precision Control in Electronic Assembly: Selective Wave Soldering Machine Discover the technical features of I.C.T's Selective Wave Soldering Machines, including precision flux application and innovative preheating systems. Learn how these machines redefine efficiency and reliability in electronic assembly. Introduction: Enhancing Precision Soldering: Technical Features of Selective Wave Soldering Machines by I.C.T Explore the innovative design and operation of I.C.T's Selective Wave Soldering Machines, featuring a seamless PCB handling system and modular design for enhanced assembly line flexibility. Experience precision control and efficiency with comprehensive PC controls, allowing easy adjustment of solder parameters like temperature and flux type. Automatic calibration and CCD mark positioning ensure consistent soldering quality. Detail Excellence: Enhancing Selective Wave Soldering Technology Flux System Mastery German high-frequency pulse injection valve ensures precise flux application. Optional flux nozzle jam detection simplifies maintenance. Pressure tank and precision pressure flow meter ensure consistent flux control. Preheat System Excellence Bottom IR preheating system ensures stability and efficiency. Maintenance is simplified with a tool-free mode and plug-in design. Soldering System Innovation Swedish "PRECIMETER" electromagnetic pump coil ensures stability. Stainless steel soldering pot prevents tin liquid leakage. N2 online heating system reduces solder dross. Transmission System Mastery Specially designed material profiles ensure operational stability. Thickened customized rails guarantee flawless operation. Control and Intelligence Keyence PLC+module high-end bus control system ensures stability. Industry 4.0 compliance allows guided programming and real-time data visualization. Market Promotion and Success Stories: Elevating Selective Wave Soldering Machine I.C.T's strategic market positioning has led to global success across diverse industries. Success stories from European clients highlight reliability and trust in the machine. Over 70 units sold across 20+ countries since 2022, establishing its industry-leading position. Conclusion Conclusion: I.C.T's Selective Wave Soldering Machine combines technical excellence with global market success, solidifying its leadership in precision soldering technology.

I.C.T ( Dongguan ICT Technology Co., Ltd. )

Does Thermal Cycling Impact the Electrical Reliability of a No-Clean Solder Paste Flux Residue

Technical Library | 2018-08-29 21:17:53.0

No-clean solder pastes are widely used in a number of applications that are exposed to wide variations in temperature during the life of the assembled electronics device. Some have observed that cracks can and do form in flux residue and have postulated that this is the result of or exacerbated by temperature cycling. Furthermore, the potential exists for the flux residue to soften or liquefy at elevated temperatures, and even flow if orientated parallel to gravity. In situations such as in automotive electronics, where significant temperature cycling is a reality and high reliability is a must, concern sometimes exists that the cracking and possible softening or liquefying of the residue may have a deleterious effect on the electrical reliability of the flux residue. This paper will attempt to address this concern.

Indium Corporation

Quieting the Noise: Quality Wave Soldering Depends on Control of Its Many Parameters.

Technical Library | 2008-01-24 16:19:43.0

The wave solder process is characterized by a large number of process parameters. To understand them all and their interactions is challenging, particularly when it comes to lead-free soldering. Wave soldering has a number of sub-processes, which include fluxing, preheating, soldering and cooling.

Vitronics Soltec

Selection Of Wave Soldering Fluxes For Lead-Free Assembly

Technical Library | 2008-07-10 12:52:18.0

This paper reviews the J-STD-004 and how it is used in flux categorization and selection. It also discusses the major types of flux formulations available, and the design, process and reliability implications of using each type. The purpose of the paper is to help the reader make an informed choice when selecting wave solder fluxes for lead-free processing.

Cookson Electronics

Through-Hole Soldering Defects And The Solutions

Technical Library | 2020-03-01 23:06:45.0

For though hole soldering, no matter it's wave soldering or selective soldering, the process is same formed by fluxing,preheating,soldering. How these 3 process will change the soldering result? When you face the soldering defects, what could be the reasons caused these and how to debug them? With below information you may get some hints.

1 CLICK SMT TECHNOLOGY CO., Limited

Simple, Effective Process Control in Wave Soldering

Technical Library | 1999-06-23 20:29:21.0

This paper outlines the harmful effects of out-of-control process parameters and describes methods of measuring and tracking them to keep them in control. It addresses all critical variables of wave soldering: flux deposition, preheat application, conveyor speed, solder temperature and solder contact time.

Siemens Process Industries and Drives

VOC-Free Wave Solder Flux Evaluation

Technical Library | 1999-04-26 15:51:30.0

The goal of the flux evaluation was to identify one product that would meet the needs of all SICN's wave solder products and processes while producing high quality assemblies. At the outset of the evaluation, it was unclear whether a single flux chemistry could satisfy such a broad range of demands, particularly because SICN's utilization of less aggressive, low-impact chemicals.

Siemens Process Industries and Drives

How to Use the Right Flux for the Selective Soldering Application

Technical Library | 2017-05-17 22:33:43.0

The selective soldering application requires a combination of performance attributes that traditional liquid fluxes designed for wave soldering applications cannot fulfill. First, the flux deposition on the board needs to be carefully controlled. Proper fine tuning of the flux physicochemical characteristics combined with a process optimization are mandatory to strike the right balance between solderability and reliability. However, localization of the flux residue through the drop jet process is not enough to guarantee the expected performance level. The flux needs to be designed to minimize the impact of unavoidable spreading and splashing events.From this perspective a fundamental understanding of the relationships between formulation and reliability is critical. In this application, thermal history of the flux residues (from room temperature to solder liquidus) is a key performance driver. Finally, it is necessary to conduct statistically designed experiments on industrial selective soldering machines in order to map the relationships between flux characteristics and selective process friendliness.

Kester

Adapting Wave Soldering to High-Flexibility Manufacturing

Technical Library | 2019-02-05 13:43:14.0

SonoFlux Servo with InSight automated board recognition system helps PCB manufacturers take steps toward greater automation and traceability and the goal of Industry 4.0.

SONO-TEK CORPORATION

Contamination Profile of Printed Circuit Board Assemblies in Relation to Soldering Types and Conformal Coating

Technical Library | 2017-12-11 22:31:06.0

Typical printed circuit board assemblies (PCBAs) processed by reflow, wave, or selective wave soldering were analysed for typical levels of process related residues, resulting from a specific or combination of soldering process. Typical solder flux residue distribution pattern, composition, and concentration are profiled and reported. Presence of localized flux residues were visualized using a commercial Residue RAT gel test and chemical structure was identified by FT-IR, while the concentration was measured using ion chromatography, and the electrical properties of the extracts were determined by measuring the leak current using a twin platinum electrode setup. Localized extraction of residue was carried out using a commercial C3 extraction system. Results clearly show that the amount and distribution of flux residues are a function of the soldering process, and the level can be reduced by an appropriate cleaning. Selective soldering process generates significantly higher levels of residues compared to the wave and reflow process. For conformal coated PCBAs, the contamination levels generated from the tested wave and selective soldering process are found to be enough to generate blisters under exposure to high humidity levels.

Technical University of Denmark

  1 2 Next

wave solder flux gravity searches for Companies, Equipment, Machines, Suppliers & Information

Gordon Brothers October 2-30, 2024 Auction

World's Best Reflow Oven Customizable for Unique Applications
SMT feeders

High Precision Fluid Dispensers
Electronic Solutions

High Throughput Reflow Oven


"回流焊炉"